
Masterarbeit

Addressing the Fundamental Barriers
towards End-to-End Driving in Simulation

Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik
Lernbasierte Computer Vision
Long Nguyen, long.nguyen@student.uni-tuebingen.de, 2025

Bearbeitungszeitraum: 01.05.2025-31.10.2025

Betreuer/Gutachter: Prof. Dr. Andreas Geiger, Universität Tübingen
Zweitgutachter: Prof. Dr. Georg Martius, Universität Tübingen

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und nur
mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von
Quellen als Entlehnung kenntlich gemacht worden sind. Diese Masterarbeit wurde
in gleicher oder ähnlicher Form in keinem anderen Studiengang als Prüfungsleistung
vorgelegt.

Long Nguyen (Matrikelnummer 5709676), November 16, 2025

3

Abstract

Despite remarkable progress in deep learning for autonomous driving, the open-
source development of end-to-end (E2E) driving systems in simulation remains
constrained by several overlooked barriers. This thesis identifies and addresses
three of the most critical ones: overly omniscient rule-based expert supervision,
incomplete navigation conditioning, and rigid evaluation protocols.

We redesign the E2E driving stack, from expert policy to dataset and model training,
around the TransFuser++ baseline. Our contributions include a new sensor-aware
expert aligned with the student’s perceptual limitations, a curated dataset covering
73 hours of diverse driving across all public CARLA towns, and an improved
architecture that removes shortcut conditioning on the target point whose inductive
bias previously led to the so called target-point bias. Lastly, we also conduct an
investigation into how to integrate radar sensing into our model baseline.

Together, these improvements substantially mitigate the target-point bias while
preserving strong driving performance. Beyond quantitative gains, our analysis
reveals that many long-route failures stem from weak navigation signals and
unrealistic route design rather than model capacity, thus highlighting the need for
improved evaluation protocols and post-training policy refinement in future work.

We release code and data to the community to accelerate progress in simulation-
based E2E driving. The system achieved state-of-the-art performance on all publicly
available CARLA closed-loop benchmarks, reaching 95 DS on Bench2Drive, 62 DS
on Longest6 v2, and 5DS on the Town13 validation routes.

5

Acknowledgments

I would like to express my deepest gratitude to Prof. Andreas Geiger for giving me
the opportunity to conduct my Master’s thesis in his group. I am equally grateful to
Kashyap Chitta, whose guidance, technical insight, and patience shaped every stage
of this project. I have learned immensely from his curiosity, goal-driven mentality,
and constant pursuit of deeper understanding - qualities that shaped not only this
thesis but also my own approach to research.

A special thank you to Bernhard Jaeger for our weekly discussions and his construc-
tive feedback on my ideas, which helped me refine my thinking and push this work
forward. I would also like to thank my Waymo teammate, Micha, for his constant
helpfulness and collaboration during the project, as well as Prof. Georg Martius for
kindly agreeing to serve as the second examiner of this thesis. I am also grateful to
Simon for assisting with the evaluation of HiP-AD, as well as to Daniel for his help
in setting up NavSim.

On a personal note, I would like to thank my cousin Trang for always lending me an
ear and offering her honest advice whenever I needed it. Her support has meant a
lot throughout this journey.

And to Lara: thank you for your unconditional love, patience, and support.

7

Contents

1 Introduction 11

2 Related Work 15
2.1 End-to-End Learning for Autonomous Driving 15
2.2 Simulation for E2E Driving Development 16
2.3 Imitation Learning for E2E Driving . 16
2.4 Expert Supervision and Model Conditioning 17

3 Preliminary Results on the Waymo Open Dataset 19
3.1 Challenge Overview . 20
3.2 Our Approach . 20
3.3 Final Results . 21
3.4 Discussion . 22

4 Methods 25
4.1 Preliminaries . 25

4.1.1 Imitation Learning (IL) . 25
4.1.2 Research Plattform: CARLA Simulator and Leaderboard 2.0 . 26
4.1.3 Development Benchmarks: Bench2Drive and Longest6 v2 . . 27
4.1.4 Evaluation Metrics . 29
4.1.5 Baseline Model Architecture 30
4.1.6 Driving Expert for Collecting Demonstrations 31
4.1.7 Doppler Radar Sensors . 32
4.1.8 Camera Model . 32
4.1.9 Kinematic Bicycle Model . 33
4.1.10 Navigation and Motion Planning in CARLA 33
4.1.11 Relevant Neural Network Building Blocks 34

4.2 Data Collection and Training Pipeline Contributions 36
4.2.1 Modernizing Model Architecture 36
4.2.2 Redesigning the Expert Driving Style 37
4.2.3 Polishing Training Dataset . 40
4.2.4 Adapting Data and Training Pipeline 46

5 Experiments 47
5.1 New Expert and Dataset . 47
5.2 Removing GRU . 48

9

Contents

5.3 Multiple Target Points Conditioning 50
5.4 Radar Fusion . 51
5.5 Further experiments . 52

5.5.1 Expanded Dataset . 53
5.5.2 Calibrating Controllers . 53
5.5.3 360 Camera . 53

5.6 State-of-the-Art Results . 53

6 Discussion 57
6.1 Failure Modes of Models . 57
6.2 Further Research and Work Directions 58
6.3 Limitations . 59
6.4 Other Experiments and Notes for Future Research 59
6.5 Qualitative Evaluation of Driving Performance 61
6.6 Conclusion . 61

10

1 Introduction

Autonomous driving has the potential to address some of the most pressing chal-
lenges in the transportation domain. Every year, more than one million people die in
traffic accidents, the majority caused by human error [28]. Automated vehicles could
drastically reduce the number of fatalities and enhance mobility for individuals
unable to operate a vehicle independently. Deep learning has become the dominant
paradigm for autonomous driving due to its conceptual simplicity, scalability, and
the rapid progress of modern hardware. In particular, end-to-end (E2E) learning, in
which a network is trained to map raw observations directly to actions, eliminates
hand-engineered mid-level abstractions and optimizes the driving task holistically.
However, the current development of E2E driving models within the open-source
and academic research community faces several fundamental issues that hinder
progress.

Recent research in development and evaluation of E2E driving models has progressed
in two main directions:

• real-world evaluation [14, 8, 42], often leveraging 3D reconstruction and
generative sensor simulation

• high-fidelity simulation environments, such as CARLA [15]

Real-world evaluation typically focuses on short-horizon reactive behavior predic-
tions, while high-fidelity simulation environments enable true closed-loop evaluation
over long routes with interactive traffic. Under optimal conditions, a competent driv-
ing model should behave reliably in both real-world replay settings and simulations,
demonstrating strong generalization across domains and the ability to reason about
long-term interactions.

As for evaluation in simulation, collecting high-quality human driving demonstra-
tions in simulation is costly and yields limited real-world value, whereas companies
have a stronger incentive to gather real-world data since it directly improves de-
ployed systems and product reliability. Simulation-based development therefore
faces several open challenges, ranging from brittle rule-based expert supervision that
relies heavily on privileged state information to insufficient navigation conditioning
and overly strict evaluation protocol, which will be examined in more detail in later
chapters. As a result, many failures observed in long-horizon evaluation stem not
from model capacity, but from a lack of high-quality supervision and incomplete
conditioning that prevents the policy from expressing its full potential.

11

Chapter 1. Introduction

For E2E driving to evolve from research prototypes to Level-4 autonomy (driverless
autonomy in restricted domains [33]) and beyond, long-route evaluation must
become the norm rather than the exception. To ensure high-impact long-route
evaluation, models must have access to improved driving demonstrations, and
evaluation protocols must be equipped with more intelligent metrics, in addition to
robust navigation conditioning that supports complex road topology and driving
routes.

In this case, navigation refers to the ability to follow a global route and make correct
high-level decisions. For example, in Figure 1.1, a good navigation system tells ego
to take the highway exit timely - decisions that depend more on structured map
information and route planning than on raw perception. These behaviors can be
described by hand-engineered algorithms when explicit map and route information
are available, and they are notoriously difficult to learn from raw sensor data alone,
especially in the context of academic research.

A robust navigation system should do the hard-to-learn but simple-to-engineer part
of the task - precise routing - allowing learning-based models to focus on what they
do best: recognize patterns, understand context, and make nuanced decisions. While
meaningful progress has been made despite imperfect navigation support, a clear
separation of concerns - where robust navigation handles routing and learning-based
models focus on perception and decision-making - would accelerate advances in
E2E driving even further.

Given the considerable engineering effort required to build robust navigation systems,
the E2E driving community should instead focus on improving evaluation protocols
and metrics. In cases like the one shown in Figure 1.1, missing the highway exit
may be an entirely reasonable outcome, especially when visual cues are ambiguous
and the maneuver requires abrupt lane changes. Yet, current evaluation schemes
treat this as a full failure and terminate the episode immediately. A more balanced
protocol should distinguish between minor navigational misses and truly unsafe
behavior, ensuring that models are not overly penalized for outcomes that stem from
imperfect map design rather than poor driving ability.

The key contribution of this project is to provide the research community with
an improved E2E driving stack, including data collection, model training, and
closed-loop driving evaluation. In the pursuit of this goal, we identified multiple
pressing issues that hinder current research progress in this highly exciting field.
We propose simple yet targeted model improvements and a comprehensive dataset
that together eliminate numerous bottlenecks within the CARLA-based E2E driving
community. Our main contributions are:

(1) An enhanced model that incorporates local route structure into planning
conditions, helping to mitigate the previously identified target point bias [20]
while still achieving high route completion.

(2) An improved expert policy tailored to a sensory driving student model,

12

addressing the current lack of high-quality driving data in CARLA.

(3) A modernized training pipeline and dataset of 73 driving hours, which covers
more spatial locations and scenario types.

(4) Identification of certain weakness in the evaluation protocols and metrics
which over-penalize safe behavior.

After supervision and conditioning were sufficiently repaired, our baseline model
TransFuser++ [31, 11, 20] obtained state-of-the-art performances on all available
CARLA benchmarks: Bench2Drive, Longest6 V2, and Town13 Validation [21, 11, 4].

We release the code and dataset to the community to facilitate follow-up research
and hope to set a new standard for closed-loop E2E driving in CARLA.

Thesis Structure: Chapter 2 reviews relevant work. Chapter 3 outlines our prelimi-
nary results on the inaugural Waymo Vision Based E2E Driving Challenge. Chapter 4
details the modification of the model, expert, and datasets in CARLA for our main
experiments. Chapter 5 presents closed-loop evaluation and ablations. Chapter 6
summarizes the findings and outlines implications for future research.

13

Chapter 1. Introduction

Figure 1.1: Example of a limited navigation system in CARLA. The driving model
sees only the red points, the output of the navigation system. The lane
change is abrupt, and the fork offers ambiguous visual cues about whether
to stay on the main road or take the exit. Attempting the lane change too
early or too late often results in an out-of-lane violation or collisions. Even
worse, missing the exit would immediately terminate the evaluation.
This highlights a limitation of current long-route evaluation protocols,
where overly strict success criteria penalize reasonable driving behavior,
which mostly come from insufficient navigation conditioning.

14

2 Related Work

This chapter presents an overview of relevant research, starting with an introduction
to end-to-end self-driving and its advantages over traditional modular architectures.
We discuss imitation learning as a scalable and effective method for training agents
to navigate complex environments by imitating an expert. Finally, we situate IL
within the context of autonomous driving, covering datasets, trends in output
representations for driving and the common issue of covariate shift.

2.1 End-to-End Learning for Autonomous Driving

Autonomous driving systems have traditionally been implemented as modular
pipelines, where perception, prediction, planning, and control are separated into
distinct components connected by hand-designed interfaces [10]. Each module
is developed and optimized independently: perception produces discrete object
detections and semantic maps, prediction forecasts agent trajectories, planning
generates motion primitives or spatiotemporal paths, and control executes low-
level commands. This modularity provides interpretability, enables module-level
debugging, and allows safety monitors to be inserted at interface boundaries.
However, the separation introduces several limitations.

Errors propagate and compound across module boundaries, as each downstream
component must operate on potentially noisy or incomplete outputs from upstream
modules. To optimize the driving objective holistically, end-to-end (E2E) methods
learn a direct mapping from raw sensor observations to control commands or short-
horizon trajectory plans [7, 13]. Rather than decomposing the task into perception,
prediction, and planning stages with discrete intermediate representations, E2E
models process sensor inputs through a single learned policy that outputs either
steering and throttle commands or a sequence of waypoints.

The primary advantage of end-to-end learning is holistic optimization: the model is
trained jointly across all components, without introducing hand-crafted intermediate
representations or post-processing steps that may discard information, as is often
the case with rule-based hard decision layers. However, E2E methods introduce new
challenges themselves. They require high-quality supervision, as the learned policy
directly inherits the biases and limitations of the expert demonstrations or reward
signals.

15

Chapter 2. Related Work

2.2 Simulation for E2E Driving Development

The development and evaluation of E2E driving policies requires extensive closed-
loop interaction with realistic driving environments, making simulation an essential
tool for research and development [15, 18, 14, 8]. Physical testing is prohibitively
expensive, dangerous during the early stages of development, and limited in the
diversity of scenarios that can be systematically explored. Simulation addresses
these limitations by offering a safe, replicable, and scalable environment in which
policies can be trained and evaluated under controlled conditions.

CARLA has emerged as the dominant open-source simulator for E2E driving
research [15]. The CARLA Leaderboard [4] was introduced to standardize evaluation
and enable reproducible comparisons across E2E driving methods. Leaderboard
1.0 (LB1) established a fixed set of routes with predefined traffic scenarios and
introduced metrics including Driving Score (DS), Route Completion (RC), and
Infraction Score (IS) to quantify closed-loop performance. However, LB1 has become
saturated, with multiple methods achieving near-perfect scores, revealing that the
diversity and difficulty of the benchmark’s scenarios are insufficient to differentiate
between approaches. Leaderboard 2.0 addresses these limitations by introducing
substantially longer routes (up to 12 km per route) and a richer set of traffic scenarios,
including complex multi-agent interactions [4].

While simulation provides a controlled and scalable development environment, it also
introduces limitations. Simulated sensor data, vehicle dynamics, and agent behaviors
are approximations of real-world conditions, and policies trained in simulation often
exhibit performance degradation when deployed in physical environments due
to the sim-to-real gap. Nevertheless, simulation remains indispensable for early-
stage development, systematic ablation studies, and large-scale benchmarking, as it
enables rapid iteration and exploration of design choices that would be infeasible in
physical testing.

2.3 Imitation Learning for E2E Driving

Imitation learning (IL) trains a policy to replicate expert demonstrations by mini-
mizing the difference between predicted and observed actions [30, 7]. Early work
demonstrated camera-to-steering mappings on simple tasks, such as lane follow-
ing, using relatively shallow networks. Recent IL approaches in simulation have
achieved substantially higher performance by scaling model capacity, incorporating
multi-modal sensor fusion, and introducing auxiliary perception losses to stabilize
training [11, 31, 35, 36, 32].

The primary advantage of IL is training stability and sample efficiency when expert
demonstrations are of high quality. The supervised objective is straightforward,
training converges reliably, and the policy can achieve competent performance

16

2.4. Expert Supervision and Model Conditioning

without requiring extensive reward shaping or safety constraints during exploration.
However, IL suffers from several well-documented limitations. First, the learned
policy inherits all biases present in the expert demonstrations, including behaviors
that rely on privileged information unavailable to the sensory student [44]. Second,
IL is vulnerable to covariate shift: when the policy deviates from the expert’s state
distribution during deployment, it encounters situations absent from the training
data and may fail catastrophically [34].

In the context of our work, we opt for behavior cloning, a subfield of IL that reduces
the learning to supervised learning, which allows us to leverage the benefits of a
simple training approach at a large model and data scale.

2.4 Expert Supervision and Model Conditioning

Expert supervision and model conditioning are two critical factors that influence the
performance of IL policies for end-to-end autonomous driving.

Regarding the driving expert, Jaeger [19] shows that the quality of demonstrations is
a critical bottleneck for the performance of IL in CARLA. By upgrading the default
rule-based driving expert of CARLA to leverage more privileged information to avoid
crashes, including precise agent positions, velocities, and future intentions, Jaeger
improved the expert’s performance and provided evidence that downstream student
performance also improved substantially. This establishes that demonstration quality,
rather than model architecture alone, can be a limiting factor in IL performance.

Zimmerlin [44] extends this analysis by documenting specific expert behaviors
in CARLA, showing that naively making the expert better does not always yield
high-quality demonstrations. For example, the expert may slow down preemp-
tively for pedestrians crossing the road while they are mostly invisible or heavily
occluded in the camera and LiDAR streams, acting on privileged knowledge of
their precise position and trajectory that the sensory student cannot observe. When
these demonstrations are used for training, the student learns to replicate the action
pattern but lacks the causal trigger, resulting in brittle policies. Zimmerlin shows
that correcting the expert to act based only on observable cues improves closed-loop
driving performance on Leaderboard 2.0.

As for navigation conditioning, Codevilla et al. [13] introduced conditional IL,
demonstrating that explicit navigation conditioning is essential for E2E driving
policies to execute directional maneuvers correctly. Without conditioning on high-
level commands (e.g., turn left, turn right, go straight), the policy observes identical
visual inputs at intersections but must produce different actions depending on the
intended route, leading to ambiguous training signals and failures at evaluation
time.

Jaeger et al. [20] further identified that E2E models can exhibit over-reliance on

17

Chapter 2. Related Work

navigation conditioning signals when perceptual representations are insufficiently
expressive. In scenarios where the bird’s-eye view (BEV) feature representation
does not adequately capture local scene geometry or agent interactions, the model
compensates by attending disproportionately to the target point, effectively using it
as a substitute for missing scene understanding rather than as a navigational guide.

In our work, we extend both directions by tailoring the expert to the sensory
limitations of the student and by systematically exploring the trade-off between
navigation conditioning and scene understanding, pushing the Pareto frontier
further.

18

3 Preliminary Results on the Waymo
Open Dataset

The Waymo Open Dataset End-to-End Driving Challenge [41] provided a controlled
benchmark for evaluating vision-based E2E policies in the context of rare, high-
impact real-world events. The challenge isolated long-tail situations and evaluated
models in an open-loop waypoint-prediction setting using 360-degree camera inputs,
ego history, and routing signals. Although it operates in an open-loop rather than a
closed-loop setting, the challenge offered a unique opportunity to stress-test models
on infrequent but safety-critical events that typical open-loop benchmarks do not
expose. Figure 3.1 depicts selected examples of the dataset.

(a) (b)

(c) (d)

Figure 3.1: Waymo E2E Demo Scenarios demonstrating the long tail and reactive
nature of the benchmark.

This challenge was particularly informative, not for measuring driving competence,
but for revealing what current open-loop benchmarks truly test. They assess reactive
alignment with a logged trajectory under a rich sensory context, which is an important
building block that needs to be considered when transferring policy from simulation
to the real world.

Although this thesis primarily focuses on closed-loop driving in CARLA, we also
participated in the Waymo E2E challenge as an educational detour—to better under-

19

Chapter 3. Preliminary Results on the Waymo Open Dataset

stand how TransFuser++ behaves under curated, real-world long-tail conditions
without diving into the complexities of closed-loop control. This exercise proved
valuable not for leaderboard performance, but for deepening our understanding of
how data curation, scenario design, and supervision shape model behavior. In that
sense, the experiment served as a diagnostic tool: it helped us analyze the general-
ization and limitations of TransFuser++ in an open-loop setting, complementing the
closed-loop investigations that form the core of our work.

3.1 Challenge Overview

The challenge evaluated predicted trajectories using the Rater Feedback Score (RFS),
as depicted in Figure 3.2. RFS evaluates predictions against human expert judgment
using a 0-10 scale. Expert raters define trust regions around acceptable driving
behavior using lateral and longitudinal thresholds at timestamps T=3s and T=5s. To
receive an expert’s score, predicted trajectories must fall within both trust regions;
otherwise, they receive exponentially decreasing penalties based on distance to
the nearest reference. As a secondary metric, we report Final Displacement Error
(FDE), measured as the L2 distance between predicted and ground truth trajectory
endpoints at T=5s.

Figure 3.2: Rater Feedback Score (RFS) Metric.

3.2 Our Approach

Our approach adopted a two-stage training workflow that leveraged the distinct
strengths of multiple, diverse data sources. In the first stage, we performed perception
pre-training on large-scale datasets with rich auxiliary labels (CARLA [15], NAVSIM

20

3.3. Final Results

Figure 3.3: Adaption of TF++ [20] for Waymo E2E Driving Challenge 2025.

[14], WOD-P [16]) to build a strong representational foundation. In the second stage,
we conducted post-training on the curated planning-centric WOD-E2E data, which
exposed the model to challenging and rarely observed driving scenarios.

We employed a Latent TransFuser (LTF) architecture, see Figure 3.3, with a ResNet34
backbone for vision-only E2E driving, extending it with a diffusion-based trajectory
generation head (DiffusionLTF) to handle multimodal trajectory distributions. The
diffusion decoder used a discrete vocabulary of representative driving patterns
derived from training data, resulting in the generation of diverse trajectory proposals.
For final predictions, we implemented a hybrid ensemble approach: by drawing 10
trajectory proposals from DiffusionLTF, grouping them by mode, averaging within
groups, and combining the highest-scoring mode with the deterministic LTF output.

3.3 Final Results

Table 3.1 presents our dataset mixture analysis on the WOD-E2E validation set. Our
experiments revealed that pre-training with auxiliary datasets, even those synthetic
from CARLA, consistently improves model performance compared to training solely
on WOD-E2E data.

Among individual datasets, the Waymo Open Dataset-Perception split (WOD-P)
emerges as the most effective single pre-training source, achieving the highest RFS
score of 7.85.

Interestingly, post-training exhibits a contrasting pattern. Incorporating additional
datasets during post-training generally degraded performance compared to training
exclusively on WOD-E2E data, with the baseline achieving the best RFS score of

21

Chapter 3. Preliminary Results on the Waymo Open Dataset

Pre-training Datasets Metrics

CARLA NAVSIM WOD-P FDE ↓ RFS ↑

6.33 ± 0.46 7.52 ± 0.01

✓ 6.02 ± 0.14 7.75 ± 0.02
✓ 5.94 ± 0.16 7.81 ± 0.03

✓ 5.82 ± 0.10 7.85 ± 0.04

✓ ✓ 5.74 ± 0.17 7.83 ± 0.04
✓ ✓ 5.84 ± 0.20 7.74 ± 0.03

✓ ✓ 5.90 ± 0.09 7.81 ± 0.04

✓ ✓ ✓ 5.73 ± 0.21 7.84 ± 0.01

(a) Impact of pre-training with diverse data.

Post-training Datasets Metrics

CARLA NAVSIM WOD-P FDE ↓ RFS ↑

5.73 ± 0.21 7.84 ± 0.01

✓ 6.25 ± 0.19 7.76 ± 0.12
✓ 6.17 ± 0.05 7.77 ± 0.04

✓ 5.82 ± 0.21 7.83 ± 0.03

✓ ✓ 5.91 ± 0.20 7.81 ± 0.07
✓ ✓ 5.65 ± 0.18 7.80 ± 0.05

✓ ✓ 5.88 ± 0.10 7.80 ± 0.04

✓ ✓ ✓ 5.74 ± 0.08 7.84 ± 0.07

(b) Joint post-training perception and planning.

Table 3.1: Dataset mixture analysis on the WOD-E2E validation set.

7.84. This indicated the importance of curated planning-centric data in the fine-
tuning phase, where exposure to the specific long-tail scenarios present in WOD-E2E
appears more valuable than increased data diversity.

Our final test submission achieved an RFS of 7.71, demonstrating competitive
performance with only a ResNet34 backbone and requiring only one day of training
on a single A100 GPU.

3.4 Discussion

One of the main lessons from participating in the Waymo E2E challenge is the
importance of label curation and annotation quality in large-scale perception datasets.
While model architecture and training strategy often receive most of the attention,
the consistency and precision of labels ultimately determine the ceiling of achievable
performance and the validity of any resulting conclusions.

Another finding of the challenge shaped our research direction in CARLA. Typ-
ical E2E driving environments provide navigation signals as discrete categorical
commands indicating the intended action at the current timestamp: left, right, or
straight.

These commands do not encode route structure or spatial relationships to the goal.
Figure 3.4 visualizes these commands as red arrows overlaid on consecutive frames
from the same intersection scenario.

The top-performing method in the challenge did not even include the navigation
command as input and still achieved competitive results.

This highlights a critical limitation in the current state of research in E2E driving:
typical short-route evaluation tests focus on reactive capability alone, not real
planning capability.

22

3.4. Discussion

(a) (b)

(c) (d)

Figure 3.4: Temporal inconsistency in automatically generated navigation commands.
Red arrows visualize the discrete command at each timestamp (straight,
left, or right). All four frames show the same intersection scenario captured
at consecutive timestamps, yet the commands flicker between different
directions, exposing the lack of temporal coherence in the navigation
signal.

The success of models that ignore the provided navigation command entirely indicate
that the limitation of the benchmark lies in its weak goal specification. If models can
achieve competitive results without explicitly knowing where to drive, it implies
that the benchmark primarily rewards short-horizon reactive alignment rather than
true goal-directed reasoning. Yet, goal-directed reasoning is precisely what enables
long-route completion in realistic driving: understanding where to go, anticipating
future maneuvers, and maintaining consistency over time. Without evaluating
this capability, the benchmark remains biased toward short-term imitation rather
than long-horizon planning, making it a poor proxy for true autonomous driving
competence.

23

4 Methods

This chapter outlines the methods used in our approach and provides the necessary
background. We start by introducing foundational concepts, practical tools and
evaluation methods used to develop and evaluate our approach. In particular, we
describe the functioning principle of the driving simulator, the evaluation metrics.
Then we describe our adaptation to a baseline driving model to help it navigate
more competently in the virtual environment. Last, we describe our adaptation of
the driving expert, training dataset and training pipeline that we tailored to better
support our goals.

4.1 Preliminaries

This section introduces the research and development environment we setup and
the evaluation metrics we used. We also present the baseline model architecture and
the driving expert we used to collect demonstrations. To close, we highlight equally
important technical tools that we used along the way.

4.1.1 Imitation Learning (IL)

IL is a widely used technique for training autonomous agents to perform complex
tasks by learning from expert demonstrations [3]. Expert demonstrations are record-
ings of a competent agent performing the desired task, consisting of sequences
of observations and corresponding actions. For autonomous driving, those obser-
vations could be camera images, LiDAR point clouds, and radar readings. While
actions include steering angles, throttle, and brake commands. Our autonomous
driving-agent, in most cases a deep neural network, maps observations to actions.
The goal of IL is to find the best student policy that mimics the expert’s behavior on a
fixed dataset as close as possible. In case of a deep neural network, this optimization
is achieved through supervised learning, which effectively optimizes the network
parameters in a differentiable manner.

For autonomous driving, it is common to predict intermediate representations such
as waypoints that the vehicle should follow [20, 44] rather than low-level control
commands. Those representations can then be converted to control commands using
a separate controller module, for example a PID controller. This decomposition

25

Chapter 4. Methods

allows the student policy to focus on high-level decision-making and planning,
while the controller handles low-level actuation.

4.1.2 Research Plattform: CARLA Simulator and Leaderboard 2.0

CARLA is an open-source simulator for autonomous driving research [15]. It provides
a high-fidelity virtual environment with realistic urban layouts, dynamic traffic
participants, and diverse weather conditions.

CARLA Leaderboard 2.0 is a standardized closed-loop evaluation benchmark for
autonomous driving agents in the CARLA simulator[15]. The protocol comes with
two official benchmarks, Town13 validation routes and the main Leaderboard 2.0
test routes. Further benchmarks can be contributed by the community by designing
new route sets and distributing those routes. A benchmark typically consists of pre-
defined routes across multiple town environments, each route containing a sequence
of navigation waypoints and scripted traffic scenarios that the agent must navigate
safely and efficiently, see Figure 4.1. The new benchmark protocol is a significant
upgrade over the previous Leaderboard 1.0, featuring more complex scenarios.
The two official benchmarks also feature longer routes, with each individual route
reaching up to 13.5 km in length.

Figure 4.1: In CARLA Leaderboard 2.0, agents are expected to follow navigation
instructions (red target points) while reacting to dynamic traffic and
scenario events.

The CARLA Leaderboard 2.0 evaluation protocol provides agents with a sensor
budget consisting of 8 RGB cameras, 2 rotating LiDAR units, and 4 radar sensors, as
well as IMU, GNSS, and a speedometer. Agents receive sensor observations at 20 Hz

26

4.1. Preliminaries

and must produce control commands at the same frequency. Navigation is specified
through a target point interface: the agent is provided with a sequence of sparse
waypoints in world coordinates at the beginning of each route, representing key
locations along the planned route such as turn points and lane change positions. The
agent also receives GPS measurements of its current position in world coordinates.

The agent is expected to follow these target points while reacting appropriately to
dynamic traffic and traffic rules. Beyond basic safety constraints such as collision
avoidance, stopping at red lights and stop signs, further constraints penalize
insufficient progress, forcing agents to maintain a minimum speed. Deviation from
the planned route beyond a threshold distance results in route deviation infractions
and episode termination. Routes are evaluated individually, and performance is
aggregated across all routes to produce final benchmark scores. The evaluation
system monitors infractions, as each contributes to a penalty that reduces the agent’s
overall score.

4.1.3 Development Benchmarks: Bench2Drive and Longest6 v2

The challenging nature of CARLA Leaderboard 2.0, with its long routes and complex
scenarios, makes it less suitable for rapid iteration during development. To address
this, we utilize two complementary closed-loop benchmarks, Bench2Drive [21] and
Longest6 v2 [11], designed for training and intermediate evaluation of autonomous
driving agents in CARLA. For an overview, see Table 4.1.

Attribute Bench2Drive Longest6 v2 Town13 LB 2.0
Routes 220 36 78 10
Length 50–200 m 1–2.5 km 11-13.5 km 10.295 km [44]
Towns All publicly available T01–06 T13 Undisclosed
Focus Scenarios Navigation Validation Generalization
Min. speed No Yes Yes Yes
Purpose Fast Iteration Fast Iteration Final Validation Ranking

Table 4.1: Comparison of popular CARLA closed-loop benchmarks.

Bench2Drive consists of 220 short routes distributed across multiple CARLA towns.
Routes are approximately 50–200 m in length and focus on specific scenario types
such as unprotected turns, pedestrian crossings, and traffic light interactions. The
shorter route length enables faster iteration during development, as complete
benchmark runs require less simulation time than Leaderboard 2.0 evaluation.
Scenarios are drawn from the same categories as Leaderboard 2.0 but with different
spatial distributions.

Longest6 v2 comprises 36 medium-length routes in a total of six towns (Town01 to
Town06), with each route ranging from 1.0 km to 2.5 km. The benchmark emphasizes
route diversity and navigation complexity, including challenging intersection geome-
tries, dense traffic flows, and complex route changing maneuvers. Longest6 v2 serves

27

Chapter 4. Methods

(a)

(b)

Figure 4.2: (a) A typical Bench2Drive scenario focuses on evaluating short-horizon
decision-making, sensor and perception robustness. Almost every route
consists of a single hard challenge to be solved. (b) On the other hand, a
Longest6 v2 route, with its complex route structure poses a challenge for
agents to stay on the path and complete the route.

as an intermediate evaluation point between the short scenarios of Bench2Drive and
the long routes of Leaderboard 2.0. For a qualitative overview, see Figure 4.2.

Both benchmarks use the same sensor setup and target point interface as Leaderboard
2.0. Bench2Drive, excluding minimum speed penalties as it consists of mostly short
routes, instead sets its focus on evaluating the agent’s ability to handle corner cases
and safety-critical scenarios rather than navigation efficiency. Our end goal is to
develop agents that perform well on Leaderboard 2.0, while the complementary
benchmarks facilitate efficient development and evaluation at multiple scales.

28

4.1. Preliminaries

4.1.4 Evaluation Metrics

Average Displacement Error (ADE) and Final Displacement Error (FDE) are
standard metrics for evaluating trajectory prediction accuracy in open-loop settings.
ADE measures the average distance between predicted and ground truth trajectory
points over the entire prediction horizon, while FDE measures the distance at the
final time step. Those two metrics are useful for debugging training pipeline, but
less relevant for closed-loop driving performance, as they do not capture the agent’s
ability to react to dynamic traffic and maintain safety.

Closed-loop performance in CARLA benchmarks is quantified through three primary
metrics: Route Completion, Infraction Score, and Driving Score.

Route Completion (RC) measures the percentage of the route distance successfully
traversed before the episode terminates. An episode ends when the agent reaches
the destination, collides with an object and becomes immobilized, deviates too far
from the planned route, or exceeds the time limit. RC is computed as the ratio of
distance traveled to total route length, expressed as a percentage between 0 and 100.

Infraction Score (IS) quantifies driving quality by penalizing safety violations and
rule infractions. The score starts at 1.0 and is multiplied by a penalty coefficient for
each infraction encountered during the route. For more details on infraction types
and penalty values, we refer to Zimmerlin [44]. Multiple infractions of the same type
on a single route compound multiplicatively, see Figure 4.3. The final IS ranges from
0 to 1, where 1 indicates a completely infraction-free drive. Since the infraction score
does not increase or decrease linearly, significance of improvements should always be treated
with care. For example, an improvement from 0.1 to 0.4 requires much fewer infractions
than an improvement from 0.4 to 0.7.

Figure 4.3: Infraction score decay for different penalty coefficients α.

29

Chapter 4. Methods

Driving Score (DS) combines route completion and infraction score into a single
performance metric: DS = RC× IS. This ensures that both navigation progress and
driving safety contribute to the final score. An agent that completes the full route (RC
= 100) with no infractions (IS = 1.0) achieves the maximum DS of 100. Conversely,
an agent that drives safely but fails to make progress, or completes the route while
incurring numerous infractions, receives a proportionally reduced score.

On short routes like those of Bench2Drive, another interesting metric is the Success
Rate (SR), which measures the percentage of routes completed without any infrac-
tions. Perfect success rate on a large number of short routes is a neccessary condition
for strong performances on longer routes, as infractions tend to terminate episodes
early. On short routes, one should be cautious with models achieving high DS but low SR,
which is possible if infractions happen mostly at the end of the routes.

4.1.5 Baseline Model Architecture

TransFuser++ is a multi-modal sensor fusion architecture for end-to-end autonomous
driving that serves as our baseline student model [31, 11, 20, 44]. Central to the
model is a transformer-based architecture that fuses RGB camera and LiDAR sensor
inputs on multiple resolutions with the self-attention mechanism. While features of
each modality are extracted independently through modality-specific convolutional
backbones, the transformer layers enable rich interactions between modalities.
Beyond cross-sensor interactions, the self-attention mechanism also enables long-
range spatial reasoning within each modality, effectively enhancing the feature
extractors of each modality with global context.

As for the planning, TransFuser++ focuses strongly on the dense BEV grid produced
by the LiDAR branch. Those tokens represent the scene in a metric 2D space, which is
a more suitable space for planning than the perspective image space of cameras. The
BEV tokens are shaped by light-weight auxiliary perception heads, which predict
2D bounding boxes and HD-Map. This design in particular benefits from the rich
pixel-level annotations available in CARLA.

The planning decoder, designed around a multi-layer transformer decoder [40],
takes the BEV tokens context to predict the dense spatial route, scalar target speed
and future positions. Besides scene tokens, the planner incorporates navigation
conditioning through the current target point, the ego’s speed, and the navigation
command. The target point in particular is a subject of importance as it indicates the
desired direction of travel and influences trajectory planning.

To stabilize training and avoid shortcut learning in the early stages, the model is
trained in two stages. In the first stage, only the perception auxiliary heads are
trained to establish strong scene representations. In the second stage, both perception
and planning losses are jointly optimized.

30

4.1. Preliminaries

4.1.6 Driving Expert for Collecting Demonstrations

IL requires expert demonstrations to supervise the student model. Collecting those
demonstrations from human drivers is expensive and time-consuming; instead, we
leveraged a rule-based expert planner that operates with privileged access to the
simulator state [6]. The expert maintains a global representation of the environment
including precise positions, velocities, and semantic classes of all agents in the scene,
as well as complete map topology and traffic light states. Note that this privileged
information is unavailable to sensor-based agents. A visualization of the expert’s
internal working mechanism can be seen in Figure 4.4.

(a)

(b)

Figure 4.4: Driving expert in action. (a) In this situation, the program detects an
accident site and performs a lane change maneuver around the obstacle
(green points). (b) The initial target speed proposal considers the speed
limit and the Intelligent Driver Model. Further heuristics, such as bound-
ing box collision prediction, reduce the target speed in case of a predicted
collision. Final driving commands are produced by two PID controllers,
one for steering along the planned route and one to throttle/brake to meet
the target speed. [6]

31

Chapter 4. Methods

4.1.7 Doppler Radar Sensors

Radar sensors emit electromagnetic waves and measure the reflections from sur-
rounding objects to estimate their distance and relative motion. Unlike cameras
or LiDAR sensors, which mainly provide spatial or visual information, radar also
directly measures the radial velocity of moving objects via the Doppler effect, making
it a valuable sensor for autonomous driving [27]. An overview and comparision of
the three sensors can be found in Table 4.2.

Cost Noise Robustn. Range Resolution Weather Robustn. Velocity
Camera ✓ ✓ • ✓ ✗ ✗

LiDAR ✗ ✗ ✓ • ✗ •

Radar ✓ ✓ ✓ ✗ ✓ ✓

Table 4.2: Comparison of sensor types, Camera, LiDAR, and Radar, across various
attributes. Green checkmarks indicate favorable traits, yellow circles
indicate moderate traits, and red crosses indicate unfavorable traits.

In CARLA, radar is implemented as a LiDAR-like sensor with raycast for collision
detection and additionally reports the relative velocity of each detection with respect
to the ego vehicle. Each radar unit produces up to 75 detections per frame and the
agent is allowed to utilize up to 4 radar units.

4.1.8 Camera Model

A camera model describes how 3D points in the world are projected onto a 2D image
plane. A particularly popular model is the pin-hole camera model, which describes
how light rays from objects in the 3D scene pass through a single point and create
an image on the sensor plane. With (X,Y,Z) as the 3D world coordinates, (u,v) as
the image coordinates, K ∈ R3×3 as the intrinsic matrix, and R ∈ R3×3, t ∈ R3×1 as the
extrinsic rotation and translation of the camera, the projection from 3D world points
to 2D image points can be expressed as:


u
v
1

 =K
[
R t
]

X
Y
Z
1

 , (4.1)

It is important to note, that this projection loses depth information. This means that
multiple 3D points along the same ray from the camera will project to the same pixel
location. As a result, only the nearest point along each ray is visible in the image.
More importantly, if we know the depth Z of a pixel, we can reverse this process
and recover the 3D positions of points from their 2D image coordinates as following

32

4.1. Preliminaries


X
Y
Z

 = ZR⊤K−1


u
v
1

−Rt, (4.2)

For our work, the pin-hole camera model is of particular significance to equip the
expert with better scene understanding and more accurate label generation. Given
the intrinsic and extrinsic parameters of the camera, we can unproject the 2D image
points with depth information and obtain their 3D coordinates in the world frame.
The obtained camera point cloud is particularly useful for occlusion checks and
generating accurate semantic labels for training data.

4.1.9 Kinematic Bicycle Model

We use the standard kinematic bicycle model with state x, control input u, and
wheelbase length L:

x =


X
Y
ψ
v

 , u = δ, L > 0 (4.3)

In a time step k, given current state Xk, control input δk, and time step duration ∆t,
the next state Xk+1 of the vehicle can be predicted as:

Xk+1 = Xk+vcosψk∆t, Yk+1 = Yk+vsinψk∆t, ψk+1 = ψk+
v
L

tanδk∆t (4.4)

As for vk+1, we fit a simple function based on current speed and control input to
approximate CARLA vehicle dynamics. For our expert, the kinematic bicycle model
is used for trajectory rollout and collision checking. Given another vehicle’s current
position, velocity, heading and control inputs, we can predict its future trajectory
and check for potential collisions with the ego vehicle’s planned path.

4.1.10 Navigation and Motion Planning in CARLA

As for navigation, PDM-Lite utilizes A*, a graph-based path planning algorithm
that finds the shortest path between target points on a road network. The algorithm
requires access to a complete map representation. This privileged map information is
unavailable to the sensor-based student model, that has to infer navigation decisions
solely from sensors and sparse target points.

33

Chapter 4. Methods

Besides navigation, the dense A* output trajectory is also used for local planning and
motion control by PDM-Lite. While A* is optimal in sense of distances, it does not
consider dynamic traffic, vehicle dynamic constraints, or other real-world factors.
Paths produced by A* can produce uncomfortable driving behavior when changing
lanes. For highway exit situations, the A* path can sometimes be impossible to follow
due to sharp turns, current speed and current traffic. For the sake of simplicity, and
because our main goal is to minimize collisions and not maximize comfort, the A*
path is generally good enough for both navigation and motion control.

4.1.11 Relevant Neural Network Building Blocks

Transformer Decoder: A transformer decoder [40] consists of multiple stacked
layers, each containing three main components: a self-attention block, a cross-
attention block, and a feed-forward network (FFN). In TransFuser++, the transformer
decoder processes a set of learned queries, where each query corresponds to one
future trajectory point. Through multiple steps, these queries iteratively refine their
representation by incorporating information from the previous queries and spatial
cues.

The self-attention mechanism allows query tokens (output trajectory points) to ex-
change information among themselves. Given a set of N input tokens X= [x1, . . . ,xN] ∈
RN×d, self-attention computes three projections:

Q = XWQ, K = XWK, V = XWV (4.5)

where WQ,WK,WV ∈ Rd×dh are learnable matrices for queries, keys, and values. The
output of the self-attention layer is the weighted sum of the value vectors:

SA(X) = softmax

QK⊤√
dh

V (4.6)

This formulation allows the queries to interact with each other. In the subsequent
cross-attention layer, the query tokens Q interact with context features C (e.g., BEV
embeddings, target point, ego speed),

Q = XWQ, K = CWK, V = CWV (4.7)

The combination of self- and cross-attention thus supports both internal reasoning
and external grounding. Finally, the feed-forward network (FFN) applies non-linear
transformations to each query independently.

34

4.1. Preliminaries

Gated Recurrent Unit (GRU): A GRU is a type of recurrent neural network that
processes sequential data by maintaining a hidden state that is updated at each
point [29, 12]. To be concrete, ht is the hidden state at trajectory point t, xt is the
input at point t, h(t−1) is the hidden state of the previous point, rt, zt, and nt are the
reset, update, and new gates, respectively, and ⊙ is the Hadamard product. For each
element xt in the input sequence, the GRU computes the following functions:

rt = σ(Wirxt+ bir+Whrh(t−1)+ bhr) (4.8)
zt = σ(Wizxt+ biz+Whzh(t−1)+ bhz) (4.9)
nt = tanh(Winxt+ bin+ rt⊙ (Whnh(t−1)+ bhn)) (4.10)
ht = (1− zt)⊙nt+ zt⊙h(t−1) (4.11)

The hidden state ht is also treated as output of the GRU for the input xt. In the original
architecture of TransFuser++, the GRU is used on top of the planning transformer
decoder to process the queries outputs before transforming them into trajectory
points. To be concrete, we encode the current target point with a linear layer and take
the embedding as the initial hidden state. The inputs are learned queries coming
from the transformer decoder. The outputs of the GRU are linearly transformed into
trajectory offsets and the final trajectories are obtained by cumulatively summing
those offsets.

Since the connection between the target point input and the first output points of
the trajectory is very shallow in the GRU, changing the magnitude and position of
the target point most likely will directly affect the scale and direction of the output
offsets.

Detection Transformer (DETR): DETR [9] is an object detection architecture that
uses learned queries to predict objects in an image. Assuming a maximal number
of objects in any picture, DETR uses a fixed set of learned queries that are passed
through a transformer decoder to predict object properties. The decoder outputs
predictions for each query, including whether an object is present and the object’s
properties, such as bounding box coordinates and class labels.

During training, DETR uses Hungarian matching to establish a one-to-one cor-
respondence between predicted objects and ground truth objects. This matching
process finds the optimal assignment that minimizes the total matching cost across all
predictions and ground truths. The cost function for matching and the loss function
for optimization typically consists of two main components: a classification loss
on the presence prediction of an object, and another loss that penalizes errors in
the predicted object properties. The total loss is computed over the matched pairs,
ensuring each ground truth object is assigned to exactly one prediction.

In our work, we adapt DETR-style processing for radar detections, where a learned
query corresponds to a radar point cluster of a dynamic object.

35

Chapter 4. Methods

4.2 Data Collection and Training Pipeline Contributions

Below we describe the contributions we made to advance the overall downstream
driving performance of TransFuser++.

4.2.1 Modernizing Model Architecture

Removing GRU: The decision to remove the GRU from the planning head was
motivated by the desire to enhance the model’s flexibility of conditioning. The
transformer decoder alone is capable of modeling complex dependencies and
interactions between trajectory points through its attention mechanism. Furthermore,
the GRU’s inductive bias to guide the planning explicitly with the target point may
limit the model’s ability to adapt to different conditioning signals.

To further stabilize training, we normalize target points by constant scaling factors
to avoid the large variance in their magnitudes. Those two modifications encourage
the model to learn planning behavior more from robust features that are actually
relevant rather than relying on explicit geometric cues.

For this purpose, we apply a linear layer directly on the transformer decoder outputs
to produce differenced outputs representing offsets between two steps. Besides
predicting only the spatial trajectory and target speed as the original TF++ does, we
also predict future positions. This provides additional supervision that encourages
the model to learn temporal consistency and motion dynamics. For closed-loop
evaluation, only the spatial trajectory and target speed outputs are used. Further
experiments on additional supervision signals, such as direct controls and different
planning frequencies, did not yield significant improvements.

Integration of Radar: We incorporated radar sensor data into the model to provide
additional motion-salient information that complements the visual and LiDAR
modalities. Since there are only a few radar detections per frame, we could either
tokenize each detection individually and let the transformer attend to them directly,
or cluster the detections into a fixed number of representative points.

We experimented with both approaches and found that clustering yields better
performance. To be specific, we encoded each radar detection by applying grid
sampling on BEV features where the detection was located. This feature vector was
concatenated with the radial velocity measurement and passed through a linear
layer to produce radar detection embeddings.

The learned queries, representing a detected vehicle, then attend to these radar
detection embeddings together with BEV features and tokenized ego velocity through
4 cross-attention layers in the transformer decoder.

We trained the radar detection head using a DETR-style loss with Hungarian
matching, where each query predicts object presence, bounding box coordinates,

36

4.2. Data Collection and Training Pipeline Contributions

and velocity vector. The detector is trained in the perception stage alongside other
auxiliary heads and will be trained end-to-end with the planning head in the joint
training stage.

As for planning, we used the radar queries as additional context for trajectory
prediction.

Using Multiple Target Points as Local Navigation Conditioning: The original TF++
model receives only the next immediate target point as a conditioning signal for
trajectory planning. This single-point representation lacks information about the
upcoming trajectory structure, limiting the model’s ability to perform anticipatory
maneuvers. Our implementation utilizes the previous target point (already visited),
the current target point (immediate goal), and the next target point (subsequent
goal).

Direct application of this change did not lead to an improvement in performance.
Inspecting the data revealed that for most samples, the current target point alone
provided sufficient directional information, making the additional points redundant.

Behind this observation is the fact that the current target point is marked as visited
as soon as the ego vehicle is within 7.5m of it. To address this, we reduced the visited
threshold to 3m in training, ensuring that the next target point remains relevant for
a longer duration. This change increased the qualitative numbers of samples where
the subsequent target point provides a qualitatively significant contextual cue.

4.2.2 Redesigning the Expert Driving Style

Correcting the Speed Limit Computation: We corrected a bug in speed limit
computation which had the expert driving too fast in certain situations. The previous
implementation used a speed limit query that, due to a technical issue with the
simulator’s API, resulted in some target speeds approximately 20 km/h above the
speed limit. Driving too fast in CARLA does not count as an infraction, but it can
lead to unsafe behaviors and increased collision rates.

We addressed this bug and also incorporated the second-highest speed of surround-
ing vehicles to produce a contextually appropriate target speed. This modification
ensures that the expert adheres to traffic regulations while naturally adapting to the
flow of nearby traffic.

Enhancing the Agent’s Occlusion Check: The previous occlusion detection relied
solely on LiDAR point clouds. To be concrete, to determine whether an agent in
the scene should be considered in the planning process, we test whether there are
sufficient LiDAR points within the agent’s bounding box.

We extended this approach by incorporating camera point clouds in addition to
LiDAR data. The camera-based point cloud is generated using instance segmentation
and depth map labels from the simulator and provides bounding boxes with visibility

37

Chapter 4. Methods

(a) (b)

Figure 4.5: (a) Small pedestrians are often hit by a few LiDAR points (b) Camera
point clouds are denser and semantically richer than LiDAR point clouds,
making them more suitable for human-like occlusion detection.

properties such as the number of visible pixels per object. Pedestrians and small
objects are detected more reliably through camera data than through LiDAR alone,
as cameras provide denser sampling and better capture the visual appearance of
these kinds of objects. See Figure 4.5 for an illustration.

Adapting the Expert to the Student’s Limitation: The TF++ student model is
ultimately a BEV planner that learns to act in a limited BEV space. While the planner
theoretically has access to everything the camera sees, practically, the spatially limited
BEV supervision constrains what the planner can effectively see. Acknowledging
this limitation, we modified the expert to also operate with a limited BEV FOV
during data collection. For an effect of this change, see Figure 4.6.

(a) (b)

(c) (d)

Figure 4.6: (a, b) In this scene, the red car is outside of the expert’s field of view, so
the expert ignores that agent and initiates the construction site overtake
sequence. (c, d) Since the estimation is not perfect, the gap was too small
for smooth overtaking. To avoid a collision, the expert has to slow down
and stop mid-overtake as soon as they detect the oncoming car.

Improving Driving Style in Uncertain Situations: In Leaderboard 1.0, occlusion

38

4.2. Data Collection and Training Pipeline Contributions

handling was mostly unnecessary since the town environments were small and
simple, allowing the student policy to maintain full visibility of all relevant agents.
With Leaderboard 2.0, the larger and more complex town layouts introduce many
occlusion scenarios, particularly at junctions and in dense traffic. To address this, we
enhanced the expert’s behavior in several key areas to better handle uncertainty and
partial observability.

• Weather-adaptive behavior: The previous expert implementation did not adjust
its behavior based on weather conditions, maintaining the same driving speed
regardless of rain, fog, or clear conditions. We incorporated weather-adaptive
behavior so that the expert drives more conservatively in adverse weather,
reflecting how a human driver would respond to reduced visibility and
decreased traction.

• Occluded junction handling: Beyond detecting which agents are visible, we
implemented several mechanisms to assess the degree of occlusion in the scene,
particularly near junctions where visibility is often limited. Using the camera
point cloud, we compute an occlusion score for each camera that quantifies
visibility based on the distance and density of observable road-relevant objects.
When the expert approaches a junction and detects high occlusion levels, it
reduces speed to account for potentially hidden hazards.

• Narrow streets with many parked cars: In urban environments with narrow streets
and parked vehicles, visibility can be severely limited. The expert now identifies
such scenarios by analyzing the density of static obstacles and reducing target
speed accordingly.

• Approaching obstacles: When approaching an obstacle, the expert reduces speed
progressively and adjusts its safety margin dynamically based on visibility
conditions: under good daylight conditions, it maintains a greater clearance
distance for early gap detection and reduces speed earlier. Under reduced
visibility (fog, rain, or nighttime), it approaches at a higher speed and a tighter
margin.

Improving Driving Style when Encountering Pedestrians: The previous implemen-
tation relied on bounding box forecasting and collision prediction to determine when
to stop for pedestrians, which could lead to late or unsafe reactions. In particular, the
expert often does not fully stop for pedestrians until they are very close or already
in the crosswalk, which can be confusing for the student model to learn from.

We simplified and improved this behavior by using visibility-based criteria derived
from camera point clouds. The expert now stops when a pedestrian is detected
with a sufficient number of visible pixels and exhibits motion above a certain speed
threshold. This approach provides a more direct and reliable stopping criterion
that is grounded in observable visual features, making it more learnable for the
sensor-based student model.

39

Chapter 4. Methods

Improving Driving Style when Encountering Emergency Vehicles: A critical
scenario in CARLA Leaderboard 2.0 involves emergency vehicles that take priority
at junctions, often approaching at high speed. Collisions with these vehicles typically
displace the ego vehicle off the road, effectively terminating the evaluation run
prematurely. The previous expert did not need to consider those scenarios because of
its privileged access to the full simulator state, allowing it to avoid collisions reliably.

In fact, the previous driving expert solved most of the scenarios by slowing down
very slightly to let the emergency vehicle pass first, before proceeding through the
junction itself.

To make the demonstrations clearer to student models, when an emergency vehicle
is detected with a high number of visible pixels, or when a vehicle exhibits a very
high approaching speed around a junction, our new expert triggers an immediate
emergency stop regardless of its current trajectory. To further strengthen the training
signal, the model only continues driving after the danger has fully passed. This
defensive behavior teaches the student to recognize and yield to priority vehicles
under time-critical conditions, preventing catastrophic failures.

4.2.3 Polishing Training Dataset

Adjusting Perception Labels for Leaderboard 2.0: To better align the model’s
features with new diverse scenarios, we made several refinements to the perception
labels.

• Semantic segmentation labels: We introduced new classes for several driving-
relevant object categories like construction sites, emergency vehicles, and stop
signs that were not available in the original camera semantic segmentation
labels. On the other hand, we move non-driving-relevant classes, such as
sidewalks, to the background class.

• BEV segmentation labels: Similarly, we removed sidewalks from the BEV segmen-
tation and added construction sites, accident obstacles, and parking obstacles.
New traffic lights requiring recognition for special stopping behavior were
also added as a separate class.

• Bounding box labels: The new scenarios in Leaderboard 2.0 also required new
bounding box labels. We refined the labeling for more subclasses at training
time to account for this fact.

• Handling of small objects: For pedestrians and cyclists, we increased the BEV
segmentation areas and bounding box sizes by 4 times to ensure they are large
enough to be reliably detected by the model.

The previous implementation of BEV segmentation provides labels with every class
drawn at collection time. We switched to collecting only road maps and drawing
other classes at training time to allow for more flexible label changes.

40

4.2. Data Collection and Training Pipeline Contributions

Custom Scenario, Stopping at Red Lights: Analysis of the collected data revealed
that in most red light scenarios, the ego vehicle stops behind other vehicles already
queued at the intersection; see Figure 4.7. To mitigate this imbalance, we introduce
a new scenario type that extends the red phase duration for all traffic lights in the
town and removes all vehicles positioned in front of the ego. This ensures that the
model learns the direct causal relationship between observing a red traffic light and
performing a stop.

(a) (b) (c)

(d) (e) (f)

Figure 4.7: (a,b,c): stopping for red gets easier with a lead vehicle. (d,e,f): adverse
weather and no lead vehicle forces the model to learn robust causal
relationships between red light and stopping behavior.

Custom Scenario, Defective Traffic Lights: We introduced a scenario in which all
junction directions simultaneously display green signals; see Figure 4.8. The ego
vehicle must navigate through an intersection while facing continuous streams of
cross-traffic from the left and/or right, requiring gap detection and assertive merging
behavior to reach the opposite side.

Figure 4.8: Defective traffic lights. The ego has to find gaps in slow but continuous
cross traffic to proceed through the intersection.

41

Chapter 4. Methods

Custom Scenario, Unprotected Left Turn with Competing Flow: We introduced a
more complex variant of unprotected left turns, where the ego attempts to merge
into the oncoming traffic flow; see Figure 4.9. The ego must not only find a gap in the
existing traffic stream but also compete with other vehicles trying to enter the same
lane from different approach angles. This teaches the model to handle competitive
merging situations where multiple agents compete for limited gaps in dense traffic,
requiring more sophisticated gap selection and assertive execution.

Figure 4.9: Unprotected left turn with competing Flow. Both front and rear collisions
are possible if the model fails to find a suitable gap in time.

Reusing Route Descriptions for More Effective Data Labeling: We observed that
certain scenario types, such as accident obstacles and construction sites, share
identical XML scenario descriptions except for their naming and geographical

42

4.2. Data Collection and Training Pipeline Contributions

(a) (b)

Figure 4.10: (a) Inspections show that most failures in ConstructionObstaclesT-
woWays come from lack of spatial coverage in urban locations. Here the
construction site is misclassified as vehicle, leading to wrong planning
decisions. (b) Analysis of route descriptions shows that many scenario
types with the same structure have complementary spatial distribution.
For example, VehicleOpensDoorTwoWays can be reused as Construc-
tionObstaclesTwoWays without any further change while contributing
more geographical diversity to the latter.

distribution across the map; see Figure 4.10. This insight leads to two opportunities
for more efficient data labeling.

For existing route descriptions that are underrepresented in the dataset, we duplicated
the XML files and renamed the scenario types to create new routes. This allowed us
to increase the frequency of rare scenarios without additional labeling efforts.

Furthermore, for the actual labeling process, a single labeled XML file from manual
laboring could be reused for multiple different scenario types that share the same
structure, effectively saving time and increase the throughput.

Adding Missing Towns: The dataset used for training was missing route definitions
for Town06 and Town07, which in turn limited the diversity of map environments
available for training. To address this gap, we adapted XML route files from CARLA
Garage [5] and translated them to the Leaderboard 2.0 format.

Diversifying Weather Presets: The original dataset used 21 weather presets that
lacked sufficient diversity to capture the range of environmental conditions encoun-

43

Chapter 4. Methods

tered during evaluation. To improve the model’s robustness to weather variations,
we introduced 30 additional weather presets, including foggy conditions, several
adversarial weather scenarios, and dawn lighting.

One preset is randomly sampled for each route. The sampled preset incorporates
slight randomization to the sun position, fog density, and rain intensity to further
increase the weather diversity of the dataset.

Adding Routes for Town15: To address missing routes in the new Town15, where no
official routes existed, we used an open-source labeling tool to manually author new
route definitions for this town [1]. Combined with the route duplication technique
described above, this effort resulted in 800 additional routes that significantly
increased the coverage of these challenging scenario types. The trigger point of each
route file also shifted a few meters to increase visual diversity, see Figure 4.11.

(a) (b)

(c) (d)

Figure 4.11: Labeling custom routes is time-consuming. Exploiting scenario structure
similarities for efficient route labeling. A labeled XML file (a) can be
reused for multiple scenario types (b,c,d).

Enhancing the Existing Sensor Rig: The previous setup relied on a single front-
facing camera and one LiDAR sensor. We expanded this to two LiDAR sensors, three
front-facing cameras, and eventually six cameras to provide 360-degree coverage.
Each camera has a FOV of 60 degrees with some overlap between adjacent views,
creating a wide frontal perception range without introducing significant distortion.

The two LiDAR sensors are positioned to cover complementary half-spaces around
the vehicle. For the LiDAR data, we stack the point clouds from the previous five
timesteps at 20 Hz, providing temporal context that encodes velocity cues and
motion information.

Extending the Sensor Rig with Radar: Radar sensors in CARLA provide at most 75
detections per frame. To maximize the sensor’s coverage, we set the vertical FOV to

44

4.2. Data Collection and Training Pipeline Contributions

be 1 degree and the horizontal FOV to be 90 degrees. We mount two radars on the
front left and front right corners of the ego vehicle, each turned at a 45-degree angle
outward to cover a wide frontal area. Similarly, we mount two radars on the rear left
and rear right corners. An illustration of a scenario that could benefit from radar can
be found in Figure 4.12

(a)

(b)

Figure 4.12: A dangerous situations where the ego has to brake sharply: Blue points
indicate free space while red points represent obstacles with a size
proportional to the detected relative velocity. Static images or LiDAR
alone would struggle to infer motion cues that radar provides natively.

Generating More Realistic Sensor Perturbations: To improve the model’s robustness
to positioning errors and lane tracking deviations, the previous system applied
random perturbations to camera and LiDAR poses during data collection. The sensor
outputs gave impression of slight translated and rotated ego vehicle in world frame
while keeping the ground truth trajectory unchanged.

We increased the magnitude of those perturbations to better simulate real-world
localization noise and ego motion uncertainty. On narrow streets, the translation
magnitudes are lowered to avoid physically implausible situations where the ego
vehicle appears to be on the opposite lane, almost crashing other vehicles, while the

45

Chapter 4. Methods

ground truth trajectory continues driving.

The rotation parameters are adapted based on the translation parameter to avoid
situation where the intentions can be misinterpreted from the sensor parameters.
In particular, we want to avoid situations where it seems like ego is doing a lane
change but the ground truth trajectory continues to stay on current lane.

4.2.4 Adapting Data and Training Pipeline

Caching Data for Higher Training Throughput: Data preprocessing for sensor inputs
and labels is computationally expensive, and loading times on distributed training
systems can become a significant bottleneck. To mitigate this, we implemented a
Pickle-based caching system where all data required for a single training sample is
preprocessed once and stored in a single cache file [39].

This approach eliminates redundant preprocessing operations and reduces I/O
overhead during training, as each sample can be loaded directly from its cached
representation and therefore requires only one disk access.

Employing Mixed Precision Training: To reduce memory consumption and acceler-
ate training, we employ mixed-precision training using the BF16 (bfloat16) numerical
format for the majority of operations. However, to maintain numerical stability, we
enforced FP32 (float32) precision for critical operations, including normalization
layers, softmax activations, and cross-entropy loss computations.

Designing a More Effective Data Compression Scheme: To reduce storage require-
ments and improve data loading efficiency, we implemented several compression
optimizations for the training data.

• Model-based LiDAR filtering: We applied a filtering step to the raw LiDAR point
clouds to remove points that are unlikely to contribute to driving decisions,
such as points on the ground or distant background structures.

• Depth label downsampling: We reduced the resolution of depth labels by a factor
of 4, as high-resolution depth maps are not necessary for effective spatial
reasoning.

• Efficient serialization and compression: We replaced the original GZIP compression
with a JSON serialization scheme, with a more efficient combination of LZMA
compression, Pickle serialization, and float16 encoding for numerical data.

• Storing camera images: We stored camera images in JPEG format, with quality
levels depending on time of day and weather conditions. For example, images
captured during nighttime or foggy weather are stored at a higher quality to
preserve important visual details.

These combined optimizations reduced the dataset size from approximately 500 GB
to 100 GB, achieving a 5× compression ratio.

46

5 Experiments

We evaluated our approaches in CARLA 0.9.15 following largely the experimental
setup of [44]. As a deviation, we trained on all available routes. This corresponds to
an L4 driving environment, where the agent is expected to operate in locations that
it has already encountered during training.

5.1 New Expert and Dataset

Table 5.1: New expert and dataset on Bench2Drive.

DS ↑ SR ↑

Baseline 83.56±0.34 0.66±0.01
New Dataset 84.94±0.50 0.67±0.01

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 15 21 183 18 15 0 3 12
New Dataset 46 12 134 45 11 5 0 23

Note: CL: Collision Layout; CP: Collision Pedestrian; CV: Collision Vehicle; OL: Outside Lane; RL: Red
Light; RD: Route Deviation; SI: Stop Infraction; VB: Vehicle Blocked.

Table 5.2: New expert and dataset on Longest6 v2.

DS ↑ RC ↑

Baseline 28.88±10.20 74.82±0.0
New Dataset 34.05±1.50 62.68±11.39

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 57 6 155 48 65 23 23 27
New Dataset 48 3 95 35 8 14 7 34

Furthermore, we evaluated the combined effect of all modifications made to the
expert and the dataset described in Chapter 4.2.2 and Chapter 4.2.3. We trained on

47

Chapter 5. Experiments

the training routes described in [44] and used the same TransFuser++ architecture.
The results are shown in Table 5.1 and Table 5.2.

The results show mixed improvements on both benchmarks. For Bench2Drive, the
driving score improved slightly from 83.56 to 84.94, accompanied by a noticeable
reduction in vehicle collisions. The increase in outside route lane violations is partly
attributable to obstacle avoidance behavior: for scenarios with static blockages, the
new expert must leave the assigned lane to bypass the obstacle safely. This behavior
incurs a minor infraction penalty but prevents more severe collisions, reflecting a
trade-off inherent in the scenario design.

On Longest6 v2, the driving score increased from 28.88 to 34.05 despite a decrease in
route completion from 74.82% to 62.68%. This apparent contradiction is explained
by the multiplicative structure of the driving score: a decrease in route completion
leads to fewer infractions, which increases the infraction score component.

The infraction breakdown shows substantial improvements in traffic rule compliance:
red light violations drop from 65 to 8 total occurrences, and stop sign violations
decrease from 23 to 7 occurrences. Vehicle collisions also improved significantly,
decreasing from 155 to 95 occurrences.

Although individual infraction improvement could be attributed to the fact that the
ego vehicle has a lower route completion, drives less distance, and thus has fewer
opportunities to collide, the overall DS improvement is a strong indicator that the
expert modifications successfully transferred to the learned policy.

5.2 Removing GRU

Table 5.3: Effect of Removing GRU on Bench2Drive.

DS ↑ SR ↑

Baseline 84.94±0.50 0.67±0.01
Removing GRU 87.26±0.47 0.70±0.01

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 46 12 134 45 11 5 0 23
Removing GRU 21 9 121 13 9 37 0 4

Note: CL: Collision Layout; CP: Collision Pedestrian; CV: Collision Vehicle; OL: Outside Lane; RL: Red
Light; RD: Route Deviation; SI: Stop Infraction; VB: Vehicle Blocked.

Following the approach discussed in Section 4.2.1, we first removed the GRU on top
of the transformer decoder. Additionally, we separated the ego speed and driving
command, which had previously been concatenated into a single conditioning token,

48

5.2. Removing GRU

Table 5.4: Effect of Removing GRU on Longest6 v2.

DS ↑ RC ↑

Baseline 34.05±1.50 62.68±11.39
Removing GRU 40.70±2.86 76.82±6.89

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 48 3 95 35 8 14 7 34
Removing GRU 14 5 120 20 14 34 14 6

into two distinct tokens. This allows the model to respond independently to speed
and navigation intent, reducing potential interference between two sources of control
information. The results are shown in Table 5.3 and Table 5.4.

The removal of the GRU and the transition to token-based navigation conditioning
yielded substantial improvements across both benchmarks. On Bench2Drive, the
driving score increased from 84.94 to 87.26. The infraction breakdown shows broad
reductions across multiple categories: layout collisions decrease from 46 to 21
occurrences, outside route lanes violations reduce from 45 to 13 occurrences, and
vehicle blocked events lower from 23 to 4 occurrences. However, the route deviation
infractions increased substantially from 5 to 37 occurrences. As previously discussed
in Section 4.1.11, the original TransFuser++modeled an almost linear relationship
between the input target point and the model’s output trajectory. This strong
inductive bias gets disrupted, leading the model to occasionally prioritize local scene
context over strict adherence to the planned route. Normalizing the target point
further reduces the model’s sensitivity to target point locations, which could also
contribute to increased route deviation infractions.

On Longest6 v2, the improvement is even more pronounced: the driving score
increased from 34.05 to 40.70, and route completion improved substantially from
62.68% to 76.82%. Notably, the improvements in several infraction categories occur
despite the longer driving distance: layout collisions decrease dramatically from 48
to 14 occurrences, lane departure violations drop from 35 to 20 occurrences, and
vehicle blocked events are nearly eliminated, decreasing from 34 to 6 occurrences.

However, several types of infractions show absolute increases: vehicle collisions rise
from 95 to 120 occurrences, red light violations increase from 8 to 14 occurrences,
stop sign violations double their occurrences from 7 to 14, and route deviation grows
from 14 to 34 occurrences. Because the model now drives 23% further on average,
part of this increase may be attributed to greater exposure to traffic scenarios rather
than degraded decision-making. The more substantial increase in route deviation
aligns with the Bench2Drive results.

Despite the mixed infraction profile, overall performance improvements, especially

49

Chapter 5. Experiments

the significant gains in driving score and route completion on Longest6 v2, confirm
that relying on a transformer decoder’s reasoning capacity is more effective than
the strong but brittle inductive bias of the original GRU-based architecture. The
increase in route deviation infractions represents a manageable trade-off that can be
addressed through subsequent refinements to the conditioning mechanism or on
the navigation system, as we will discuss.

5.3 Multiple Target Points Conditioning

Table 5.5: Multiple Target Points Conditioning on Bench2Drive.

DS ↑ SR ↑

Baseline 87.26±0.47 0.70±0.01
Multiple Target Points 89.29±0.54 0.76±0.01

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 21 9 121 13 9 37 0 4
Multiple Target Points 15 1 91 11 10 22 0 2

Note: CL: Collision Layout; CP: Collision Pedestrian; CV: Collision Vehicle; OL: Outside Lane; RL: Red
Light; RD: Route Deviation; SI: Stop Infraction; VB: Vehicle Blocked.

Table 5.6: Multiple Target Points Conditioning on Longest6 v2.

DS ↑ RC ↑

Baseline 40.70±2.86 76.82±6.89
Multiple Target Points 42.13±0.75 62.87±2.07

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 14 5 120 20 14 34 14 6
Multiple Target Points 3 0 77 22 10 60 7 2

As discussed in Section 4.2.1, we modified the navigation conditioning mechanism to
provide the model with three sequential target points instead of a single target point.
By exposing the model to the local trajectory structure, this modification enables
anticipatory behavior: the agent can initiate lane changes earlier when it detects that
the upcoming target point requires repositioning.

The results are shown in Table 5.5 and Table 5.6. The introduction of three-point
trajectory conditioning produced clear improvements on Bench2Drive, but mixed
results on Longest6 v2.

50

5.4. Radar Fusion

On Bench2Drive, the driving score increased from 87.26 to 89.29. The infraction
breakdown shows broad reductions across multiple categories: vehicle collisions
decrease from 121 to 91 occurrences, route deviation drops substantially from 37 to
22 occurrences, and layout collisions reduce from 21 to 15 occurrences.

On Longest6 v2, the results are less conclusive. The driving score shows a modest
increase from 40.70 to 42.13 (a gain of 3.5%), while route completion drops from
76.82% to 62.87%. The infraction breakdown reveals substantial improvements in
several safety-critical categories: layout collisions decrease dramatically from 14 to 3
occurrences, and vehicle collisions drop from 120 to 77 occurrences. However, route
deviation increases substantially from 34 to 60 occurrences.

The mixed performance on Longest6 v2 indicates that while three-point conditioning
provides clear benefits for safety and collision avoidance, other system limitations
may prevent the full potential of this modification from being realized. Video analysis
of the evaluation runs suggested that untuned controller parameters and insufficient
data coverage for certain scenario types and Town06 represent potential bottlenecks
that could mask the benefits of improved trajectory reasoning. Despite the reduction
in route completion, the overall trend suggests that three-point conditioning does
improve driving safety, particularly by substantially reducing vehicle collisions and
layout collisions.

5.4 Radar Fusion

Table 5.7: Radar fusion on Bench2Drive.

DS ↑ SR ↑

Baseline 89.29±0.54 0.76±0.01
Radar Sensing 90.01±0.42 0.76±0.01

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 15 1 91 11 10 22 0 2
Radar Sensing 19 8 86 14 6 35 0 5

Note: CL: Collision Layout; CP: Collision Pedestrian; CV: Collision Vehicle; OL: Outside Lane; RL: Red
Light; RD: Route Deviation; SI: Stop Infraction; VB: Vehicle Blocked.

The baseline model processes only single frames from camera and LiDAR sensors,
relying on implicit temporal reasoning to infer velocity and motion dynamics.
Although velocity and temporal cues can, in principle, be extracted from static
observations, for example, fast-moving vehicles typically have more space around
them, while slow or stopped vehicles are often surrounded by other traffic. Such
indirect inference is less principled and more error-prone than directly observing

51

Chapter 5. Experiments

Table 5.8: Radar fusion on Longest6 v2.

Configuration DS ↑ RC ↑

Baseline 42.13±0.75 62.87±2.07
Radar Sensing 42.60±2.56 65.30±3.38

CL↓ CP↓ CV↓ OL↓ RL↓ RD↓ SI↓ VB↓

Baseline 3 0 77 22 10 60 7 2
Radar Sensing 10 2 78 38 12 50 9 6

velocity information through dedicated sensors.

To provide the model with explicit velocity information, we incorporated radar
sensor data into the perception pipeline. To the best of our knowledge, this represents
the first work to integrate radar sensing into an end-to-end learning system within
the CARLA ecosystem. The results are shown in Table 5.7 and Table 5.8.

The integration of radar sensing yields modest improvements across both bench-
marks, although the results remain inconclusive. On Bench2Drive, the driving score
increased slightly from 89.29 to 90.01. Vehicle collisions decreased marginally from
91 to 86 occurrences. On Longest6 v2, the driving score shows a minimal increase
from 42.13 to 42.60, with route completion slightly improving from 62.87% to 65.30%.
The infraction profile similarly shows mixed trends.

The modest performance gains suggest that other system bottlenecks now dominate
the overall behavior. At this stage of development, limitations in controller tuning,
scenario coverage, and dataset diversity may mask the potential benefits of velocity-
aware reasoning. However, since the integration of radar is relatively straightforward
and computationally inexpensive and provides measurable improvement, it remains
a valuable addition to the perception stack. Furthermore, future benchmarks that
emphasize dynamic agent interaction may better showcase the advantages of radar
sensing.

5.5 Further experiments

In the following sections, we describe additional experiments conducted to further
improve closed-loop performance. Those experiments build on the previous sections
without changing the architecture or training procedure. We summarize the key
findings in Tables 5.9, 5.10, 5.11 in Section 5.6. Bench2Drive further provides
multi-ability metrics, which we report in Table 5.12

52

5.6. State-of-the-Art Results

5.5.1 Expanded Dataset

We included all routes from Town06, Town07, and Town15 in addition to the existing
data. This increased the size of the dataset from approximately 48 hours to 72 hours
of expert driving data. No changes are made to architecture, loss, optimizer, or
expert; therefore, any downstream difference is due solely to additional data.

5.5.2 Calibrating Controllers

In some situations, our model drives approximately 20km/h below the baseline. The
PID controller was originally tuned for the baseline model’s speed profile, and we
hypothesize that suboptimal controller parameters may limit performance when the
model’s speed profile changes significantly.

To address this, we retuned the lateral controller by adding a parameter that increases
the steering sensitivity when the predicted route has high curvature.

As for the target point controller, we decreased the threshold to pop a target point of
the queue in case the ego vehicle is in proximity of multiple target points from 5
meters to 4 meters. In this situation, the ego vehicle is likely approaching a complex
intersection or sharp turn, and popping target points later allows the controller to
better follow the intended path.

Furthermore, we skip the subsequent target point if the distance to that point is larger
than 50 meters. We do this by simply replacing the subsequent target point with
the current target point. This prevents the large magnitude of the subsequent target
point from destabilizing the controller. We acknowledge that a more principled
approach would be to applied a more sophisticated normalization technique and
train the model simply on more variability of target point distribution. However,
this simple heuristic already yields noticeable improvements.

5.5.3 360 Camera

The baseline model configuration uses three front-facing cameras (front-left, front-
center, front-right) to capture the forward FOV. To mirror a production vehicle’s
configuration and eliminate blind spots, we added three additional rear-facing
cameras (back-left, back-center, back-right). Each camera retains the same resolution
and frame rate as in the baseline configuration, while the overlapping FOV between
adjacent cameras ensures seamless coverage.

5.6 State-of-the-Art Results

In the following comparison to prior work, we report Driving Score (DS) and Success
Rate (SR) for Bench2Drive. For Longest6 V2 and Town13 Validation, we report only

53

Chapter 5. Experiments

DS, as these are the quantities that are consistently available across methods. The
Bench2Drive table is a non-exhaustive summary; for a more complete list, we refer
to [2].

We also want to note that the relative improvements are not linearly proportional
to actual capability of the system. Examining the Figure 4.3 we can see that an
improvement of the scores from 20 to 40 needs to reduces more infractions than to
improve the scores from 60 to 80.

Table 5.9: State of the art on Bench2Drive.

Method DS ↑ Inputs Expert Backbone

Hydra-NeXt [23] 73.86 2C Think2Drive ResNet50
VLR-Driver [22] 75.01 Undisclosed Think2Drive Undisclosed
ORION [17] 77.74 6C Think2Drive EVA-02-L
AutoVLA [43] 78.84 6C Think2Drive Qwen2.5-VL-3B
[1] Reproduced TF++ 83.56±0.34 1C+1L PDM-Lite RegNetY-032
TF++ [44] 84.21 1C+1L PDM-Lite RegNetY-032
[2] New Expert & Dataset 84.94±0.50 3C+2L PDM-Lite RegNetY-032
SimLingo [32] 85.07 ± 0.95 1C PDM-Lite InternViT-300M
R2SE [25] 86.28 1C PDM-Lite Undisclosed
HiP-AD [38] 86.77 6C Think2Drive ResNet50
BridgeDrive [26] 86.86 ± 0.88 1C+1L PDM-Lite RegNetY-032
[3] Removing GRU 87.26±0.47 3C+2L PDM-Lite RegNetY-032
[4] Three TPs 89.29±0.54 3C+2L PDM-Lite RegNetY-032
[5] Radar Fusion 90.01±0.42 3C+2L+4R PDM-Lite RegNetY-032
[6] Dataset Expansion 94.01±1.48 3C+2L+4R PDM-Lite ResNet34
[7] Calibrated Controller 94.72±0.72 3C+2L+4R PDM-Lite ResNet34
[8] 360 Camera 95.04±0.71 6C+2L+4R PDM-Lite ResNet34
[9] Final Model 95.28±0.36 3C+2L+4R PDM-Lite RegNetY-032

PDM-Lite (expert) [6] 97.02 priv – –

C = camera, L = LiDAR, R = radar, priv = privileged state access.

54

5.6. State-of-the-Art Results

Table 5.10: State of the art on Longest6v2.

Method DS ↑ Inputs Expert Backbone

HiP-AD [38] 7 6C Think2Drive ResNet50
[1] Reproduced TF++ 28.88±10.20 1C+1L PDM-Lite RegNetY-032
[2] New Expert & Dataset 34.05±3.52 3C+2L PDM-Lite RegNetY-032
[3] Removing GRU 40.70±1.30 3C+2L PDM-Lite RegNetY-032
[4] Three TPs 42.13±1.80 3C+2L PDM-Lite RegNetY-032
[5] Radar Fusion 42.60±2.56 3C+2L+4R PDM-Lite RegNetY-032
[6] Dataset Expansion 50.01±2.86 3C+2L+4R PDM-Lite ResNet34
[8] 360 Camera 54.16±5.32 6C+2L+4R PDM-Lite ResNet34
[7] Calibrated Controller 57.74±2.99 3C+2L+4R PDM-Lite ResNet34
[9] Final Model 62.92±1.58 3C+2L+4R PDM-Lite RegNetY-032

PDM-Lite (expert) [6] 73 priv – –

C = camera, L = LiDAR, R = radar, priv = privileged state access.

Table 5.11: Results on Town13 validation routes. Models were trained on all towns,
and no early termination was applied.

Method RC ↑ DS ↑ NDS ↑

TF++ [44] 68.53 0.96 4.94
[7] 3 Cameras ResNet34 71.82±8.04 5.01±0.96 14.65±1.29
[8] 6 Cameras ResNet34 53.95±10.20 5.01±0.97 9.49±4.19
[9] 3 Cameras RegNetY-032 74.69±9.05 4.32±0.12 14.06±4.13

PDM-Lite 92.35 40.20 61.55

Table 5.12: Multi ability scores on Bench2Drive evaluation protocol.

Method Merg. ↑ Overtak. ↑ Emer. Brake ↑ Give Way ↑ Traf. Sign ↑ Mean ↑

TCP-traj* 8.89 24.29 51.67 40.00 46.28 34.22
UniAD-Base 14.10 17.78 21.67 10.00 14.21 15.55
VAD 8.11 24.44 18.64 20.00 19.15 18.07
DriveTransformer 17.57 35.00 48.36 40.00 52.10 38.60
ORION 25.00 71.11 78.33 30.00 69.15 54.72
TransFuser++ 58.75 57.77 83.33 40.00 82.11 64.39
HiP-AD 50.00 84.44 83.33 40.00 72.10 65.98
SimLingo 54.01 57.04 88.33 53.33 82.45 67.03
BridgeDrive 63.50 58.89 88.34 50.00 88.95 69.93
[9] Final Model 72.50 97.77 91.66 40.00 89.47 78.28

55

6 Discussion

6.1 Failure Modes of Models

Yielding to Emergency Vehicles: This scenario expects the model to switch lanes
to yield to an emergency vehicle approaching from behind. We observed that most
models fail to yield to the emergency vehicle. We hypothesize that this is due to
the rarity of this event in the training data. A pursuit to solve this challenge with
a single-frame model may be futile, as the model might struggle to return to the
original lane after yielding, especially once the emergency vehicle is no longer visible.
This could lead to route deviation infractions on longer benchmarks.

Missing Highway Exits: On highways, we observed that models often miss exits,
particularly when multiple lane changes are required. This is an important failure
mode to address in future work, as missing an exit directly terminates the episode.
It also raises the question of metric fairness, since in real-world driving, missing
an exit is often safer than attempting a high-risk late lane change. Moreover, the
difficulty is partly due to limitations of the simulation environment: highway exits
in CARLA are often poorly signaled, and the A* planner provides very little time for
the model to initiate a lane change. Performing an early lane change can result in an
“out-of-lane” infraction, constraining the model to switch lanes only when explicitly
instructed by the navigation system.

Performing Multiple Lane Switches Before Intersections: We observed that models
often struggle with performing multiple lane switches before intersections. This is
a common scenario in the Longest6 V2 benchmark, which significantly reduces
the model’s success rate. We hypothesize that this is caused by the scarcity of such
examples in the training data.

Navigating Dense Intersections: We observed that even the best of our models
still frequently have issues with unprotected left and right turns, particularly in
dense urban intersections with multiple dynamic agents. These situations require
the model to predict the intentions of other vehicles and time its own acceleration
precisely to avoid collisions or unnecessary delays.

Overall, many failure modes observed in our models are often related to their
inability to recover from route deviations.

57

Chapter 6. Discussion

6.2 Further Research and Work Directions

Several promising directions emerge from our findings:

• Improved Metrics and Evaluation Protocols: Current metrics at times dis-
proportionately penalize deviations from the reference route, especially over
longer trajectories. A deviation at the start of a route can lead to a zero score,
even if the model could have completed the remaining distance without any
other infractions.

In many cases, such early failures are not caused by the model itself but stem
from an insufficiency in the navigation interface, or other stochastic factors
unrelated to driving competence.

This can obscure meaningful progress in driving behavior and exaggerate the
effect of minor or unlucky route differences. Future evaluation protocols could
therefore incorporate mechanisms that penalize route deviations while still
allowing continued evaluation, making it possible to assess overall driving
competence more reliably. In particular, such a protocol could allow route
deviation under penalty. Upon deviation, the agent is returned to the nearest
on-route waypoint. A recovery budget of n resets/km applies; exceeding this
budget would terminate the episode.

• Refined Benchmarks for Leaderboard 2.0: While Bench2Drive provides a
broad and diverse evaluation setting, we observed that even models with
low performance on other benchmarks, for example Longest6 V2, can achieve
competitive results on Bench2Drive. For example, HiP-AD performs well on
Bench2Drive despite struggling elsewhere.

Conversely, Longest6 V2 includes routes that are unrealistically difficult even
for human drivers, while Town13 Validation over-penalizes early deviations,
making it harder to evaluate models fairly.

These findings suggest that current benchmarks could benefit from refinement
to better balance difficulty, realism, and robustness of evaluation.

• Reinforcement Learning Fine-Tuning: Current sensor perturbation approaches
enable recovery from small deviations. However, as the Longest6 V2 evaluation
shows, when models operate far out of distribution and the target point bias is
removed, they often fail to return to the driving route even when the target
points provide a clear cue.

This limitation arises because recovery behavior is not part of the training
process. Fine-tuning models through closed-loop interaction could allow them
to learn corrective behaviors that help mitigate such situations and improve
robustness during long-horizon driving.

Taking everything into account, improving evaluation protocols and benchmark

58

6.3. Limitations

design will be key to enabling researchers to perform more meaningful investigations
and obtain conclusive insights, rather than being constrained by current system-level
bottlenecks. In the meantime, post-training techniques can be investigated to increase
the recovery capability of IL-trained models.

6.3 Limitations

Model Generalization: We acknowledge the fact that our work did not consider the
generalization aspect of trained models. All benchmark evaluations were conducted
on scenes present in the training dataset, meaning the model has seen the locations
at least once. Evaluations on an internal generalization benchmark indicate that our
models still struggle to generalize to unseen scenarios. This indicates that while
our models perform well on the training distribution, they may not be robust to
variations in the environment or task.

Nonetheless, we argue that current research in end-to-end driving still struggles
to achieve consistent and reliable performance even in seen environments. Many
recent works fail to reach full completion on standard benchmarks despite extensive
overfitting to training towns and scenarios. Therefore, we believe that before tackling
the more ambitious challenge of out-of-distribution generalization, it is crucial to
first address the fundamental bottlenecks in perception, planning, and evaluation,
which limit robustness within the training domain itself.

Expert Logic: The logic to handle pedestrians in our system remains fragile and
unrealistic. Realistic pedestrian behavior is often ambiguous and highly variable,
making it difficult for rule-based experts to reliably predict intent. For CARLA’s
simplified pedestrian behavior, the current "brake when visible and moving" heuris-
tic might be sufficient, but it is overly cautious in urban environments. A more
structured modeling of pedestrian intent and temporal reasoning could improve
such interactions in future works.

Computational Requirements: Another limitation is the computational demand
of our training setup. Training a single ResNet-34 model from scratch requires
approximately three to four days on high-end hardware, and large-scale experiments
demand considerable GPU resources. This prolongs the development cycle and limits
the ability to perform systematic architecture or hyperparameter exploration. Efficient
fine-tuning strategies, frozen backbones, and lightweight closed-loop evaluation
proxies could make research more accessible and sustainable.

6.4 Other Experiments and Notes for Future Research

Dataset Distillation: To reduce training cost, we explored dataset distillation by
enriching metadata for each sample and selecting a smaller but more representative

59

Chapter 6. Discussion

subset. The distilled dataset contained only 42% of the original samples, reducing post-
training time to 17 hours, but resulting in performance drops of 2 DS on Bench2Drive
and 10 DS on Longest6 V2. We hypothesize that the model was undertrained, since
the number of epochs was not adjusted accordingly. The underlying infrastructure
for dataset distillation has been implemented and remains available for future work
to build upon and explore improved subset selection strategies.

Model-Predictive Controller for Waypoint Planning: We also experimented with
a version of DiffusionDrive [24], where the diffusion model predicts future ego-
positions that are then executed via a model-predictive controller. The performance
approached that of TransFuser++ on Bench2Drive after enough fine-tuning of the
controller.

Currently, all leading models in CARLA separate the future positions into spatial
trajectory and target speed. In terms of implementation, the target speed is also
simplified using vehicle dynamics, which further streamlines training but complicates
sim2real research.

The results of this experiment suggest that a general waypoint-based trajectory rep-
resentation (future positions) can achieve performance comparable to the currently
dominant approach in CARLA. A well-tuned controller is sufficient to interpret
these waypoints efficiently. We hope this insight will encourage further research
on general trajectory representations, which are more transferable to real-world
systems.

Enhanced Average-Pooling Tokenizer: In the TransFuser backbone, three out
of four fusion stages rely on PyTorch’s AdaptiveAvgPool2d, which may restrict
representational expressiveness. To address this, we replaced the average-pooling
layers with learnable convolutional filters that also increase the output dimensionality.
This modification resulted in minor improvements on Longest6 V2, but the gains
were not consistent across runs, leaving the results inconclusive.

Vision Transformer Backbone: Following the release of DINOv3 [37], we integrated
its ViT-B variant into our system by replacing the self-attention fusion modules with
cross-attention layers, in which the queries correspond to tokenized LiDAR feature
maps. The resulting model, with roughly 200 M parameters, ran successfully within
our framework, but required twice the training time and achieved a slightly lower
DS (–2 DS) on Bench2Drive. We hypothesize that non-convolutional backbones may
demand extensive hyperparameter tuning to match the inductive biases of driving
datasets, an avenue that remains promising but was beyond our computational
budget. This direction remains worth exploring, given the strong performance of
Vision Transformers on real-world perception and driving benchmarks.

60

6.5. Qualitative Evaluation of Driving Performance

6.5 Qualitative Evaluation of Driving Performance

We refer the reader to our accompanying YouTube video for qualitative demonstra-
tions of our policy in closed-loop execution. A complete set of videos demonstrating
our model’s performance on Longest6 V2 and Bench2Drive will be included in the
repository release.

6.6 Conclusion

The work presented in this thesis is a comprehensive and systematic modernization
of the closed-loop end-to-end driving pipeline in CARLA, focusing on improving its
supervision, conditioning, and training infrastructure. Through these targeted yet
pragmatic interventions, the TransFuser++ baseline was transformed into a robust,
state-of-the-art system. At present, it leads across all available CARLA Leader-
board 2.0 benchmarks. Beyond performance improvements, this work revealed two
key structural limitations in current end-to-end driving research.

First, restricted navigation capabilities arise from both the model and the infras-
tructure itself. Our TransFuser++ implementation partially solved the first issue by
conditioning the planner on local routing structure and significantly improved the
downstream driving performance. As for infrastructure, many navigation failures
are amplified by the simulator’s limited route guidance and rigorous route deviation
penalty. These kinds of system-level issues complicate reliable evaluation and fair
comparison between models, highlighting the need for new evaluation metrics and
protocols. In particular, a protocol that allows but penalizes route deviation while
still giving the model a chance to get sent back to the route and continue its drive.

Second, limited recovery capability is an inherent shortcoming of current imitation
learning models. Our experiments show that removing the target-point bias, a step
necessary for improving driving score, reduces its ability to recover once deviations
occur. This exposes an inherent trade-off between unbiased navigation and recovery
robustness. While sensory perturbations have been explored as an orthogonal
approach to improve resilience, they are currently insufficient to handle larger
distribution shifts. Addressing this limitation likely requires new forms of interactive
or closed-loop training that explicitly exposes models to a larger deviation.

By openly addressing these issues and releasing a transparent infrastructure, our
work aims to provide the community with a strong foundation for further research.

61

https://www.youtube.com/watch?v=E9pRKWMb3qQ

Bibliography

[1] autonomousvision/carla_route_generator.

[2] Bench2Drive - a Hugging Face Space by CarlaLeaderboard.

[3] Self-Driving Cars | Universität Tübingen.

[4] CARLA Autonomous Driving Leaderboard, Feb. 2020.

[5] autonomousvision/carla_garage, Oct. 2025.

[6] J. Beißwenger. Pdm-lite: A rule-based planner for carla leader-
board 2.0. https://github.com/OpenDriveLab/DriveLM/blob/DriveLM-
CARLA/pdmlite/docs/report.pd f ,2024.

[7] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to End
Learning for Self-Driving Cars, Apr. 2016.

[8] W. Cao, M. Hallgarten, T. Li, D. Dauner, X. Gu, C. Wang, Y. Miron, M. Aiello, H. Li,
I. Gilitschenski, B. Ivanovic, M. Pavone, A. Geiger, and K. Chitta. Pseudo-Simulation
for Autonomous Driving, Aug. 2025.

[9] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-
End Object Detection with Transformers, May 2020.

[10] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li. End-to-end Autonomous
Driving: Challenges and Frontiers, Aug. 2024.

[11] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger. TransFuser: Imitation
with Transformer-Based Sensor Fusion for Autonomous Driving, May 2022.

[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling, Dec. 2014.

[13] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end Driving
via Conditional Imitation Learning, Mar. 2018.

[14] D. Dauner, M. Hallgarten, T. Li, X. Weng, Z. Huang, Z. Yang, H. Li, I. Gilitschenski,
B. Ivanovic, M. Pavone, A. Geiger, and K. Chitta. NAVSIM: Data-Driven Non-
Reactive Autonomous Vehicle Simulation and Benchmarking, Oct. 2024.

[15] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An Open
Urban Driving Simulator, Nov. 2017.

63

Bibliography

[16] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi,
Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens,
and D. Anguelov. Large Scale Interactive Motion Forecasting for Autonomous
Driving : The Waymo Open Motion Dataset, Apr. 2021.

[17] H. Fu, D. Zhang, Z. Zhao, J. Cui, D. Liang, C. Zhang, D. Zhang, H. Xie, B. Wang,
and X. Bai. ORION: A Holistic End-to-End Autonomous Driving Framework by
Vision-Language Instructed Action Generation, Mar. 2025.

[18] C. Gulino, J. Fu, W. Luo, G. Tucker, E. Bronstein, Y. Lu, J. Harb, X. Pan, Y. Wang,
X. Chen, J. D. Co-Reyes, R. Agarwal, R. Roelofs, Y. Lu, N. Montali, P. Mougin,
Z. Yang, B. White, A. Faust, R. McAllister, D. Anguelov, and B. Sapp. Waymax: An
Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research,
Oct. 2023.

[19] B. Jaeger. Expert drivers for autonomous driving. Master’s thesis, University of
Tübingen, 2021.

[20] B. Jaeger, K. Chitta, and A. Geiger. Hidden Biases of End-to-End Driving Models,
Aug. 2023.

[21] X. Jia, Z. Yang, Q. Li, Z. Zhang, and J. Yan. Bench2Drive: Towards Multi-Ability
Benchmarking of Closed-Loop End-To-End Autonomous Driving, Nov. 2024.

[22] F. Kong, Y. Li, W. Chen, C. Min, Y. Li, Z. Gao, H. Li, Z. Guo, and H. Sun. Vlr-driver:
Large vision-language-reasoning models for embodied autonomous driving. In
Proceedings of the 2025 IEEE/CVF International Conference on Computer Vision (ICCV) –
Poster Session, 2025. Poster 2205, Exhibit Hall I #2491, Thu 23 Oct 5:45–7:45 p.m. PDT.

[23] Z. Li, S. Wang, S. Lan, Z. Yu, Z. Wu, and J. M. Alvarez. Hydra-NeXt: Robust
Closed-Loop Driving with Open-Loop Training, July 2025.

[24] B. Liao, S. Chen, H. Yin, B. Jiang, C. Wang, S. Yan, X. Zhang, X. Li, Y. Zhang, Q. Zhang,
and X. Wang. Diffusiondrive: Truncated diffusion model for end-to-end autonomous
driving, 2025.

[25] H. Liu, T. Li, H. Yang, L. Chen, C. Wang, K. Guo, H. Tian, H. Li, H. Li, and
C. Lv. Reinforced refinement with self-aware expansion for end-to-end autonomous
driving, 2025.

[26] S. Liu, W. Chen, W. Li, Z. Wang, L. Yang, J. Huang, Y. Zhang, Z. Huang, Z. Cheng, and
H. Yang. BridgeDrive: Diffusion Bridge Policy for Closed-Loop Trajectory Planning
in Autonomous Driving, Sept. 2025.

[27] P. Mishra, S. Srivastava, J. Li, K. Bansal, and D. Bharadia. Demo Abstract: C-Shenron:
A Realistic Radar Simulation Framework for CARLA, page 726–727. Association for
Computing Machinery, New York, NY, USA, 2025.

[28] W. H. Organization. Global status report on road safety 2023. World Health Organization,
2023.

64

Bibliography

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library, Dec. 2019.

[30] D. A. Pomerleau. ALVINN: An Autonomous Land Vehicle in a Neural Network.
In Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann,
1988.

[31] A. Prakash, K. Chitta, and A. Geiger. Multi-Modal Fusion Transformer for End-to-End
Autonomous Driving, Apr. 2021.

[32] K. Renz, L. Chen, E. Arani, and O. Sinavski. SimLingo: Vision-Only Closed-Loop
Autonomous Driving with Language-Action Alignment, Mar. 2025.

[33] S. I. I. Report. Taxonomy and definitions for terms related to on-road motor
vehicle automated driving systems, sae standard j3016_201401. Information Report
J3016_201401, SAE International, Jan. 2014.

[34] S. Ross, G. J. Gordon, and J. A. Bagnell. A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning, Mar. 2011.

[35] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu. Safety-Enhanced Autonomous Driving
Using Interpretable Sensor Fusion Transformer, Dec. 2022.

[36] H. Shao, L. Wang, R. Chen, S. L. Waslander, H. Li, and Y. Liu. ReasonNet: End-to-End
Driving with Temporal and Global Reasoning, May 2023.

[37] O. Siméoni, H. V. Vo, M. Seitzer, F. Baldassarre, M. Oquab, C. Jose, V. Khalidov,
M. Szafraniec, S. Yi, M. Ramamonjisoa, F. Massa, D. Haziza, L. Wehrstedt, J. Wang,
T. Darcet, T. Moutakanni, L. Sentana, C. Roberts, A. Vedaldi, J. Tolan, J. Brandt,
C. Couprie, J. Mairal, H. Jégou, P. Labatut, and P. Bojanowski. Dinov3, 2025.

[38] Y. Tang, Z. Xu, Z. Meng, and E. Cheng. HiP-AD: Hierarchical and Multi-Granularity
Planning with Deformable Attention for Autonomous Driving in a Single Decoder,
Mar. 2025.

[39] G. van Rossum. Python tutorial. Technical Report CS-R9526, Centrum voor Wiskunde
en Informatica (CWI), Amsterdam, May 1995.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention Is All You Need, Aug. 2023.

[41] R. Xu, H. Lin, W. Jeon, H. Feng, Y. Zou, L. Sun, J. Gorman, K. Tolstaya, S. Tang,
B. White, B. Sapp, M. Tan, J.-J. Hwang, and D. Anguelov. Wod-e2e: Waymo open
dataset for end-to-end driving in challenging long-tail scenarios, 2025.

[42] H. Zhou, L. Lin, J. Wang, Y. Lu, D. Bai, B. Liu, Y. Wang, A. Geiger, and Y. Liao.
Hugsim: A real-time, photo-realistic and closed-loop simulator for autonomous
driving, 2024.

65

Bibliography

[43] Z. Zhou, T. Cai, S. Z. Zhao, Y. Zhang, Z. Huang, B. Zhou, and J. Ma. AutoVLA: A
Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive
Reasoning and Reinforcement Fine-Tuning, June 2025.

[44] J. Zimmerlin, J. Beißwenger, B. Jaeger, A. Geiger, and K. Chitta. Hidden Biases of
End-to-End Driving Datasets, Dec. 2024.

66

Erklärung

Laut Beschlüssen der Prüfungsausschüsse Bioinformatik, Informatik, Informatik Lehramt,
Kognitionswissenschaft, Machine Learning, Medieninformatik und Medizininformatik der
Universität Tübingen vom 05.02.2025. Gültig für Abschlussarbeiten (B.Sc./M.Sc./B.Ed./M.Ed.) in
den zugehörigen Fächern. Bei Studienarbeiten und Hausarbeiten bitte nach Maßgabe des/der
jeweiligen Prüfers/Prüferin.

1. Allgemeine Erklärungen

Hiermit erkläre ich:

• Ich habe die vorgelegte Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt.

• Ich habe alle wörtlich oder sinngemäß aus anderen Werken übernommenen Aussagen als
solche gekennzeichnet.

• Die Arbeit war weder vollständig noch in wesentlichen Teilen Gegenstand eines anderen
Prüfungsverfahrens.

• Falls ich ein elektronisches Exemplar und eines oder mehrere gedruckte und gebundene
Exemplare eingereicht habe (z.B., weil der/die Prüfer/in(nen) dies wünschen): Das
elektronisch eingereichte Exemplar stimmt exakt mit dem bzw. den von mir eingereichten
gedruckten und gebundenen Exemplar(en) überein.

2. Erklärung bezüglich Veröffentlichungen

Eine Veröffentlichung ist häufig ein Qualitätsmerkmal (z.B. bei Veröffentlichung in Fachzeitschrift,
Konferenz, Preprint, etc.). Sie muss aber korrekt angegeben werden. Bitte kreuzen Sie die für Ihre
Arbeit zutreffende Variante an:

Die Arbeit wurde bisher weder vollständig noch in Teilen veröffentlicht.

Die Arbeit wurde in Teilen oder vollständig schon veröffentlicht. Hierfür findet sich im
Anhang eine vollständige Tabelle mit bibliographischen Angaben.

3. Nutzung von Methoden der künstlichen Intelligenz (KI, z.B. chatGPT, DeepL, etc.)

Die Nutzung von KI kann sinnvoll sein. Sie muss aber korrekt angegeben werden und kann die
Schwerpunkte bei der Bewertung der Arbeit beeinflussen. Bitte kreuzen Sie alle für Ihre Arbeit
zutreffenden Varianten an und beachten Sie, dass die Varianten 3.4 - 3.6 eine vorherige Absprache
mit dem/der Betreuer/in voraussetzen:

3.1. Keine Nutzung: Ich habe zur Erstellung meiner Arbeit keine KI benutzt.
 3.2. Korrektur Rechtschreibung & Grammatik: Ich habe KI für Korrekturen der Recht-
schreibung und Grammatik genutzt, ohne dass es dabei zu inhaltlich relevanter Textgeneration
oder Übersetzungen kam. Das heißt, ich habe von mir verfasste Texte in derselben Sprache
korrigieren lassen. Es handelt sich um rein sprachliche Korrekturen, sodass die von mir
ursprünglich intendierte Bedeutung nicht wesentlich verändert oder erweitert wurde. Im
Zweifelsfall habe ich mich mit meinem/r Betreuer/in besprochen. Alle genutzten Programme
mit Versionsnummer sind im Anhang meiner Arbeit in einer Tabelle aufgelistet.

 3.3. Unterstützung bei der Softwareentwicklung: Ich habe KI als Unterstützung beim
Schreiben von Code in der Softwareentwicklung genutzt. Es handelt sich hierbei lediglich um
Unterstützung und nicht um die automatische Generierung von größeren Programm-Teilen.
Im Zweifelsfall habe ich mich mit meinem/r Betreuer/in besprochen. Alle genutzten
Programme mit Versionsnummer sind im Anhang meiner Arbeit in einer Tabelle aufgelistet.

 3.4. Übersetzung: Ich habe nach vorheriger Absprache und mit Erlaubnis meines/r
Betreuer/in KI zur Übersetzung von mir in einer anderen Sprache geschriebenen Texte
genutzt. Jede derartige Übersetzung ist im laufenden Text gekennzeichnet und der Anhang
meiner Arbeit enthält eine Tabelle mit einem vollständigen Nachweis aller übersetzten
Textstellen und der verwendeten Programme mit Versionsnummer.

 3.5. Code-Generierung: Ich habe nach vorheriger Absprache und mit Erlaubnis meines/r
Betreuer/in KI zur Erzeugung von Code in der Softwareentwicklung genutzt. Der Anhang
meiner Arbeit enthält eine Tabelle mit einem vollständigen Nachweis aller derartigen
Nutzungen, der verwendeten Programme mit Versionsnummer und der verwendeten Prompts.

 3.6. Text-Generierung: Ich habe nach vorheriger Absprache und mit Erlaubnis meines/r
Betreuer/in KI zur Erzeugung von Text in meiner Arbeit genutzt. Jede derartige Verwendung
von KI ist im laufenden Text gekennzeichnet und der Anhang meiner Arbeit enthält eine
Tabelle mit einem vollständigen Nachweis aller derartigen Nutzungen, der verwendeten
Programme mit Versionsnummer und der verwendeten Prompts.

Falls ich in irgendeiner Form KI genutzt haben (siehe oben), dann erkläre ich:

Mir ist bewusst, dass ich die Verantwortung trage, falls es durch die Verwendung von KI zu fehler-
haften Inhalten, zu Verstößen gegen das Datenschutzrecht, Urheberrecht oder zu wissenschaftlichem
Fehlverhalten (z.B. Plagiaten) kommt.

4. Abschluss und Unterschrift(en)

Mir ist bekannt, dass ein Verstoß gegen diese Erklärung prüfungsrechtliche Konsequenzen haben und
insbesondere dazu führen kann, dass die Prüfungsleistung mit „nicht ausreichend“ bzw. die
Studienleistung mit „nicht bestanden“ bewertet wird und bei mehrfachem oder schwerwiegendem
Täuschungsversuch eine Exmatrikulation erfolgen bzw. ein Verfahren zur Entziehung eines eventuell
verliehenen akademischen Titels eingeleitet werden kann.

_____________________________ ______________________ ____________________________

Vorname, Nachname Ort, Datum Unterschrift
Student/in

Die Punkte 3.4 - 3.6 erfordern eine Zustimmung des/r Betreuer/in. Sollten Sie einen dieser Punkte
angekreuzt haben, dann sollte der/die Betreuer/in bitte hier unterschreiben:

Ich habe der oben genannten Nutzung von KI zur Erstellung der Arbeit zugestimmt.

_____________________________ ______________________ ____________________________

Vorname, Nachname Ort, Datum Unterschrift
Betreuer/in

Bibliography

KI-System Anbieter Version /Modell Verwendungszweck

ChatGPT (Pro) OpenAI GPT-5 Textüberarbeitung, Code
Claude Anthropic Claude 4.5 Sonnet Textformulierung, Code

Table 6.1: Verwendete KI-Modelle im Rahmen der Thesis.

69

	Introduction
	Related Work
	End-to-End Learning for Autonomous Driving
	Simulation for E2E Driving Development
	Imitation Learning for E2E Driving
	Expert Supervision and Model Conditioning

	Preliminary Results on the Waymo Open Dataset
	Challenge Overview
	Our Approach
	Final Results
	Discussion

	Methods
	Preliminaries
	Imitation Learning (IL)
	Research Plattform: CARLA Simulator and Leaderboard 2.0
	Development Benchmarks: Bench2Drive and Longest6 v2
	Evaluation Metrics
	Baseline Model Architecture
	Driving Expert for Collecting Demonstrations
	Doppler Radar Sensors
	Camera Model
	Kinematic Bicycle Model
	Navigation and Motion Planning in CARLA
	Relevant Neural Network Building Blocks

	Data Collection and Training Pipeline Contributions
	Modernizing Model Architecture
	Redesigning the Expert Driving Style
	Polishing Training Dataset
	Adapting Data and Training Pipeline

	Experiments
	New Expert and Dataset
	Removing GRU
	Multiple Target Points Conditioning
	Radar Fusion
	Further experiments
	Expanded Dataset
	Calibrating Controllers
	360 Camera

	State-of-the-Art Results

	Discussion
	Failure Modes of Models
	Further Research and Work Directions
	Limitations
	Other Experiments and Notes for Future Research
	Qualitative Evaluation of Driving Performance
	Conclusion

