LEAD: Minimizing Learner-Expert Asymmetry in End-to-End Driving
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Figure 1. (Top) Learner-Expert Asymmetry. (a,c) Unrealistic expert demonstration: the expert (blue) stops before the fire truck or
oncoming vehicle (red boxes) are in the field of view. (b,d) Our improved expert (LEAD) explicitly reasons about occlusions, thereby
behaving more realistically: It only stops once the vehicles are visible, leading to explainable and more challenging behavior (e.g. it now
needs to negotiate with the oncoming vehicle in (d)). (e) Insufficient route information (single green star) in the old learner policy can
lead to undesired behavior. (f) By conditioning on multiple target points, our new learner executes a lane change successfully. (Bottom)
Performance Across Benchmarks. Using our high-quality synthetic data, we train imitation learning policies that achieve state-of-the-art
performance on closed-loop simulations (CARLA) and improve results on benchmarks using real-world data (NAVSIM and Waymo).



Abstract

Simulation-generated datasets for autonomous driving rely
on omniscient data collection ‘expert’ policies, which use
unobservable scene information (e.g., from occluded re-
gions) to make driving decisions. When such data is used
for end-to-end policy training, it results in an informa-
tion asymmetry between the expert and the ‘learner’ pol-
icy, which has limited sensor coverage and navigational in-
tent information compared to the expert. We show that this
asymmetry leads to a significant drop in the performance of
the learner. To combat this, we present LEAD, a new high-
quality synthetic dataset collected in the CARLA simulator
with three key improvements. (1) The expert minimizes its
use of unobservable information by removing entities from
its input state that would be occluded in the learner’s field
of view. By providing the learner with (2) detailed driver
intent information and (3) rich sensor modalities (cameras,
LiDARs, radars, and odometry), the dataset narrows down
the information gap between the learner and expert. We
then propose TransFuser v6 (TFVv6), a simple end-to-end
learner policy trained on LEAD. As a result of our improve-
ments, TFv6 substantially advances the state of the art on
all publicly available CARLA closed-loop driving bench-
marks, reaching driving scores of 95 on Bench2Drive, 62
on Longest6 v2, and 15 on the Townl3 validation routes.
Finally, we aggregate the LEAD dataset with several pub-
lic real-world datasets under a unified repository to enable
cross-dataset evaluation. We show that pre-training TFv6
on synthetic data from LEAD leads to consistent perfor-
mance gains when followed by fine-tuning with real data
from the NAVSIM vI/v2 and WOD-E2E benchmarks.

1. Introduction

Learning by Cheating (LBC) has proven to be an effec-
tive paradigm for tackling vision-based robotics and au-
tonomous driving tasks [6]. LBC works in two distinct
phases. First, we train or program an ‘expert’ to drive while
‘cheating’ by giving it access to ground-truth information,
e.g., the exact map layout and the precise positions of all
other traffic participants. This agent performs the planning
sub-task without the burden of perception. Next, we train a
‘learner’ (the final model) to imitate the privileged expert’s
actions. However, this final agent uses only sensor inputs
(e.g., camera images) and must therefore learn perception
sufficiently well to replicate the expert’s decisions. A rich
body of recent literature and various datasets collected by
privileged experts in the CARLA simulator [18], such as
PDM-Lite [47], Bench2Drive [27], DriveLM-CARLA [48],
and SimLingo [42], support this methodology.

However, these datasets take the expert’s privileged na-
ture to the extreme: they provide experts with inputs that

extend far beyond solving perception. The expert hence
possesses omniscient dynamics understanding and a perfect
Field of View (FOV), spanning several hundred square me-
ters around the vehicle, whereas the learner must rely on
low-resolution, partial-FOV sensors. For example, PDM-
Lite, the current state-of-the-art expert, often utilizes in-
formation from occluded areas in its decision-making, e.g.,
braking for a passing vehicle before it is visible (Fig. | (a-
d)). Furthermore, the expert accesses the long-term routing
intent spanning several hundred meters ahead of its current
position, while the learner sees only a single target point
at a random distance of 7.5-200 m away (Fig. | (e)). We
name these mismatches in terms of visibility and intent the
learner-expert asymmetry.

Surprisingly, most prior work has overlooked this prob-
lem, focusing on algorithmic improvements rather than
dataset biases. In this paper, through systematic analysis,
we observe that both visual and intent asymmetry lead to
major degradation in learner performance. To tackle the vi-
sual asymmetry problem, we constrain expert visibility dur-
ing synthetic data collection. The expert remains privileged,
using bounding boxes to represent traffic agents, but we fil-
ter agents from its input when they are not in the learner’s
FOV. To tackle intent asymmetry, we improve the learner’s
input space rather than constraining the expert. We achieve
this by collecting a three-point representation of the local
route (previous, current, and next target point) to condition
the model, instead of using only a single target point. To
further improve the learner’s input space, we collect data
with a comprehensive sensor suite. Specifically, we include
radar sensors which are rarely used in end-to-end driving
datasets yet provide crucial information regarding the ve-
locities of other agents. Combining these improvements,
we collect a new dataset, LEAD, which is designed to min-
imize Learner-Expert Asymmetry in Driving.

We then propose TransFuser v6 (TFv6), a low-latency,
simple, and general learner policy architecture that supports
flexible formats for both intent and sensor inputs. TFv6
achieves exceptionally high performance on every existing
CARLA benchmark when trained on LEAD, with each of
our proposed dataset improvements responsible for a sig-
nificant proportion of the performance gain. We evaluate
TFv6 on Bench2Drive, a popular benchmark featuring 50
recent methods from the past two years [27]. Our approach
achieves a driving score 8 points higher than the current
state of the art (SOTA), a significant leap in a benchmark
where top methods are usually separated by only 1-2 points.
On Longest 6 v2, we more than double the SOTA perfor-
mance, raising it from 23 to 62 [26]. Similarly, on Town 13,
the most challenging closed-loop benchmark on CARLA,
we triple the current SOTA performance from 5 to 15 [59].

Our TFv6 architecture’s simplicity allows us to co-train
on multiple datasets despite minor differences in sensor and



intent input formats. We aggregate LEAD with popular
real-world datasets into a unified repository that enables
cross-dataset training and evaluation. On NAVSIM [17],
pre-training TFv6 on data from LEAD leads to improved
performance after fine-tuning on in-domain data, particu-
larly on the challenging navhard benchmark [3] which
tests the ability to recover from perturbations. We ob-
serve similar results on the Waymo Open Dataset End-to-
End driving benchmark consisting of rare long-tail scenar-
ios [54], thus providing initial evidence of the benefits of
high-quality synthetic data in end-to-end AV development.
Our code and data will be made publicly available.

2. Related Work

End-to-End Driving via Imitation Learning: Imitation
Learning (IL) can be used to train a neural network policy
end-to-end, taking in sensor data and predicting an action
representation of expert behavior by minimizing the dif-
ference between predicted and observed actions on an of-
fline dataset. Invented in 1988 [40] and revived in 2016
[2], IL has become the predominant paradigm for end-to-
end driving today [8, 28, 36, 37, 42, 49, 59], following a
period of rapid progress on public driving benchmarks [5—
7,9, 10, 13, 14, 22, 25, 41, 45, 46, 52]. End-to-end driv-
ing methods can be trained with human data and evaluated
with open-loop metrics on static datasets [3, 17, 22, 54].
However, open-loop metrics have been observed to be un-
reliable [12, 35, 51, 56] due to driving being a closed-loop
task. Benchmarking closed-loop driving is possible in sim-
ulators [18, 32, 38, 44, 53, 55, 58]. In this work, we use the
most popular and feature-rich autonomous driving simula-
tor, CARLA [18], which is built upon Unreal Engine.

Human-annotated training data is typically too costly to
acquire in simulations. Instead, learning by cheating is used
ubiquitously across the literature [6]. In this approach, a
privileged rule-based [1, 13, 16, 23, 48] or reinforcement
learning-based [15, 26, 33, 57] planner, called an expert
driver, with access to the ground-truth simulator state, is
first created and collects and annotates the data for sub-
sequent imitation learning. It is well recognized that the
quality of driving behavior the expert driver provides is im-
portant and imposes an upper bound on the performance
of the IL agent. However, besides the performance of the
expert, we show that the alignment of the expert and IL
agent input space is largely overlooked. Aspects that in-
fluence the decision-making of an expert should be present
in the learner’s observation space. In our study, we build
upon the rule-based PDM-Lite expert [48], which, unlike
Think2Drive [33], is open-source and enables us to analyze
influential factors for expert-learner alignment.

Learner-Expert Visual Asymmetry: The quality of
demonstrations is a critical bottleneck for the performance

of IL. Chitta et al. [10] improved a prior rule-based driv-
ing expert to leverage more privileged information, includ-
ing precise agent positions, velocities, and future intentions,
which improved both expert and student driving perfor-
mance. Zimmerlin et al. [59] demonstrate that simply im-
proving expert performance does not guarantee high-quality
supervision to a student. For example, experts may react to
information unavailable to the student policy, such as slow-
ing down for pedestrians outside the camera or LiDAR field
of view. During training, the policy observes the decelera-
tion but not its cause, breaking the causal link between per-
ception and action. In this work, we thoroughly investigate
such visual asymmetries and demonstrate that addressing
them through aligned data collection substantially improves
learned policy performance.

Learner-Expert Intent Asymmetry: Codevilla et al. [13]
show that explicit navigation conditioning is essential for
E2E driving policies to resolve ambiguity at intersections,
where identical visual inputs must produce different actions
based on intended routes. However, Jaeger et al. [25] fur-
ther identified that models can over-rely on navigation sig-
nals when perceptual representations are weak, using target
points as shortcuts that bypass perception rather than as nav-
igational guides. In our work, we systematically study the
conditioning mechanism for route information, demonstrat-
ing that careful design choices substantially improve both
safety and robustness.

3. Minimizing Learner-Expert Asymmetry

This section presents controlled experiments that show how
minimizing the learner-expert asymmetry can improve the
performance of a strong baseline learner policy.

3.1. Preliminaries

We consider the task of navigating through urban scenarios
along a predefined route. Each route is represented by a
sequence of sparse GNSS coordinates, called target points.

Benchmark: We use the CARLA simulator version 0.9.15
and the longest6 v2 benchmark routes [26]. On longest6
v2, the agent is tested on 36, 1-2 km long routes in town 1-
6, which include 6 predefined safety-critical scenario types.
Metrics: We use the official CARLA closed-loop metrics
in our experiments. The Route Completion (RC) is the
percentage of the completed route, whereas the Infraction
Score (IS) is a factor starting at 1.0 that decays with every
misbehavior. The Driving Score (DS) forms the primary
metric by multiplying RS and IS.

Baseline: Our approach builds on top of TransFuser++
[25, 59]. To avoid confusion due to the large number of
TransFuser variations, we adopt the versioning nomencla-
ture [24] and call this model TFv5 from now on. TFv5 is
an end-to-end driving model trained with imitation learning



TFV5 trained with... | DS 1 RC 1

| Stat| Ped| Veh| OL| Red| Dev] Stop| Block|

PDM-Lite dataset [48] | 22.51 +4.42
LEAD dataset (Ours) 34.05 + 150

70.68 + 8.24 0.46
62.68 + 11.30 0.33

0.05 1.37 046 058  0.16 0.18 0.27
002 0.65 024 005 0.10 0.05 0.24

Table 1. Visibility Alignment. We compare TFv5 (ResNet-34) performance when trained on PDM-Lite versus our proposed LEAD
dataset. Dataset improvements alone yield a +11.5 point gain in Driving Score (DS), primarily through reducing infraction penalties.
Stat: Collisions with Layout; Ped: Collisions with Pedestrian; Veh: Collision Vehicle; OL: Outside Lane; Red: Red Light; Dev: Route
Deviation; SI: Stop Infraction; Block: Vehicle Blocked. All auxiliary metrics are normalized by kilometers driven.

(IL) that applies separate CNN encoders on a large front-
view RGB image and a LiDAR raster, with intermediate
transformer layers to fuse both modalities [41]. Multiple
prediction heads operate on the encoded input in paral-
lel, including auxiliary perception decoders [10], a GRU-
based path decoder [25], and a discrete target speed predic-
tion [25]. The vehicle is controlled by steering towards the
predicted path using a PID controller and by controlling lon-
gitudinal velocity using a linear regression model that aims
to track the predicted target speed. TFv5 is a strong baseline
with close to state-of-the-art performance on Bench2Drive
[27], longest6 v2, and the CARLA leaderboard 2.0 valida-
tion and test routes. We base our method on it because it
requires less inference compute than competing approaches
[42, 49], so it offers the best performance-efficiency trade-
off. In the following sections, we make several improve-
ments to TFv5, leading to our new method TFv6.

3.2. Visibility Alignment

TFVS is trained with data that is collected and automatically
labeled by the privileged expert planner PDM-Lite [48].
PDM-Lite is a rule-based planning method that incorpo-
rates classic planning ideas [50] and model-predictive con-
trol strategies. It was optimized for maximum performance
on the CARLA leaderboard 2.0. However, as we highlight
in this section, good planning performance does not imply
that PDM-Lite is best suited as an expert for imitation learn-
ing policies. In particular, any information mismatch be-
tween the inputs to the expert driver and the learned model,
e.g. caused by occlusions, can lead to causal confusion in
the learner. Specifically, PDM-Lite uses the bounding boxes
of all surrounding agents as input, whereas TFv5 does not
see vehicles or pedestrians that are occluded by the static
environment. Consequently, when PDM-Lite reacts to oc-
cluded vehicles, TFvS5 is forced to associate the driving de-
cision with other patterns in its input, leading to causal con-
fusion [8].

To prevent this, we incorporate an occlusion check into
PDM-Lite, where we exclude vehicles and pedestrians from
PDM-Lite’s input that are not visible in the camera of the
downstream agent. This is achieved using CARLA’s in-
stance segmentation camera together with depth unprojec-
tion to reconstruct a dense point cloud aligned with the cam-
era view. For each actor, we then estimate its visibility by

counting the number of pixels within its bounding box that
are actually seen by the camera.

A second mismatch is the range over which objects
PDM-Lite reasons. It can see all objects that are up to 96
meters away. TFv5 uses a single front-view camera com-
bined with a surround-view LiDAR. To account for objects
only visible in the LiDAR, we include objects visible in the
LiDAR and exclude all objects that fall outside the LiDAR
range. The LiDAR of TFv5 has a smaller effective percep-
tion range than PDM-Lite, which is rasterized into a grid of
size 64 x 96 meters.

Using this expert, we collect LEAD, a new dataset gath-
ered on the same routes as PDM-Lite and comparable in
size. Table 1 compares TFv5 trained on LEAD versus on
PDM-Lite. TFv5 achieves an improvement of 12 DS on
the longest6 v2 benchmark with this new dataset, demon-
strating that the visual input mismatch between expert and
learner was a significant issue. Table 3 shows that LEAD
and PDM-Lite achieve almost identical driving scores. This
shows that the improvement is driven by minimizing the
learner-expert asymmetry and not by having a stronger-
performing expert. Note that this improvement comes at no
computational cost in terms of training or inference time.

3.3. Intent Alignment

To drive well, IL methods need to be conditioned on the
high-level goal of where to drive to disambiguate the cor-
rect action at intersections [13]. Modern end-to-end driving
architectures that are tested on long routes in closed-loop
benchmarks are conditioned using a target point GNSS lo-
cation. Besides conditioning, this target point is implicitly
used by models to recover from compounding errors [25].
They blindly drive towards the next target point when out of
distribution, which returns them to in-distribution states.
The CARLA leaderboard 2.0 benchmarks introduces
static obstacles, which enables measuring a new downside
of the target point bias. Fig. 2 (a) shows an example where
TFv5 produces unsafe trajectories that pass too close to
static vehicles. This slows ego progress and increases the
risk of a collision with oncoming traffic. To combat this
problem, we make several changes to the target point condi-
tioning. First, we remove the GRU, following [20, 42], and
add the target point as an encoded token to the transformer
decoder, moving it further away from the output in the net-



LEAD used to train... | DS 1 RC? | Statf Ped| Veh| OL| Red| Dev| Stop] Block]
TFv5 [59] 3405+ 150 6268113 | 033 002 065 024 005 010 005 0.24
TFv6 (Ours) 4213 1075 62871207 | 001 000 042 012 005 033 003  0.01

Table 2. Intent Alignment. We compare the TFv5 [59] against TFv6 (ours) when trained on the LEAD dataset. Our intent alignment and
improved route conditioning substantially improves the Driving Score (48) and infraction penalties, with similar route completion rates.

TFv5

TFv6 (Ours)

Figure 2. Target Point Bias. a) TFv5 outputs trajectories (red dots) and spatial paths (blue line) which are heavily influenced by the target
point (green star). In situations such as overtaking static vehicles, this results in unrealistic and unsafe trajectories that pass dangerously
close to the static vehicles. b) With the modifications incorporated in TFv6, we observe that the model is less prone to this bias.
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Figure 3. TransFuser v6 Architecture. We use the Trans-

Fuser [41] backbone to encode multi-view images into Bird’s-Eye-
View (BEV) tokens. Auxiliary inputs, such as target points, navi-
gation commands, and past ego states, are processed by secondary
encoders. Then, a transformer-based decoder [25] jointly predicts
the future trajectory, spatial path, and target speed. If available,
LiDAR and radar can be fused as additional sensor inputs.

work architecture. Second, instead of using just one target
point as conditioning, we additionally condition on the last
target point that was passed and the next target point. This
is useful for higher driving speeds in CARLA leaderboard
2.0, where the model might need to predict waypoints that
are farther away, past the next target point, which is am-
biguous otherwise. We add trajectory prediction into the
architecture as an auxiliary loss in CARLA, and as a pri-
mary output for benchmarks that do not contain target speed
labels. Our TFv6 architecture is visualized in Fig. 3. Note

that in this section we use the sensor setup of TFvS5 for a fair
comparison, and the extension of sensors is incorporated in
Section 4.

Table 2 shows that these architectural changes together
improve the models’ driving score by +8 on longest6 v2.
Qualitatively, we observe that the target point bias of the
model is weaker after these changes. Fig. 2 (b), for exam-
ple, shows that the new model now ignores the target point
and successfully overtakes the static vehicle. This can be
quantitatively seen in the lower collision metrics (Stat, Ped,
and Veh). However, we also observe that without the target
point bias, the model has weaker recovery ability as indi-
cated by the increase in route deviation. This is not appar-
ent in the route completion metric because our changes also
reduce vehicle blocked infractions.

4. Experiments

In this section, we provide system-level comparisons of
TFv6 on 5 different benchmarks against state-of-the-art
methods and other baselines. Our main experiments involve
closed-loop CARLA benchmarks, where TFv6 outperforms
all prior work by a large margin. Additionally, we ana-
lyze different sensor setups, showing that a combination of
cameras, LiDAR, and radars achieves the best performance.
Lastly, we show that training on synthetic data improves



Method Backbone Input Modalities Bench2Drive Longest6 v2
Cameras LiDAR Radar | Driving Score T  Success Rate 1 | Driving Score T Route Completion 1
HiP-AD [49] ResNet-50 6% X X 86.8 69.1 7 56
SimLingo [42] | InternViT-300M 1x X X 85.1 67.2 22 70
TFvS5 [59] RegNetY-032 1x v X 84.2 67.3 23 44 70 +8
6x X X 91.6 +0.7 79.5 +20 43 + 1 85 +3
6x v X 94.7 + 0.6 85.6 +0.0 52 +7 88 45
ResNet-34 6x X v 94.2 +0.7 85.3 +09 52 +1 88 +2
TEv6 (Ours) 6 v v 95.0 07 84.3 401 5445 89 &3
3x v v 94.7 +0.7 82.1 +36 57 +3 99 +0
| RegNetY-032 | 3x v v 95.2 4 0.3 86.8 1 0.7 62 41 91 &1
PDM-Lite [48] - - 97.0 92.3 73 100
LEAD (Ours) - - 96.8 96.6 73 93

Table 3. CARLA Bench2Drive and Longest6 v2. TFv6 outperforms all baselines. Our best model uses three cameras, LiDAR and Radar.

Method | RCt | ISt DSt | It NDSt?

22
59

‘Town13 Val’ — Town13 withheld during training

TFv5 [59] 5020 | 0.10  1.08 | 0.04 2.12
TFv6 (Ours) 39.70 | 0.28  2.65 | 0.22 4.04
PDM-Lite [48] | 83.40 | 0.41 3630 | 0.63  58.50

Table 4. Benchmarking on CARLA Town13. Mean over 3 eval-
uations of each agent.

performance on real-world open-loop benchmarks.
4.1. Closed-Loop Simulation Benchmarks

Benchmarks: We test TFv6 on three established bench-
marks on the CARLA [18] simulator, Bench2Drive [27],
longest6 v2 [26] and Town 13 wvalidation [59].
Bench2Drive features 220 short, 50m-200m long routes
with over 44 different scenario types across 12 towns.
It tests how well a method can handle the diversity of
different driving situations and is computationally cheaper
to evaluate than the other benchmarks used in this work.
Bench2Drive is very popular, with over 40 recent methods
being tested on the benchmark. We show a comparison
with every existing method in the supplementary mate-
rial. However, the short length of the test routes means
that Bench2Drive is not ideal for measuring long-term
consistency or the ability to recover from compounding
errors. To complement this, we additionally test our
model on the longest6é v2 benchmark, which features 36
1.0-2.5 km long routes with 6 types of scenarios in 6
towns. Longest6 v2 is therefore better able to measure
recovery from compounding errors. Lastly, we evaluate
on the Townl13 validation benchmark. It consists of 20

routes that are on average 12.39 km long, featuring roughly
100 scenarios per route of 38 different types. Unlike the
prior two benchmarks, all routes are in the huge Town 13,
and methods are not allowed to train on data collected
in that town, therefore testing the ability of methods to
generalize to novel environments. Town 13 validation can
be considered the most challenging autonomous driving
benchmark today. The level of consistency needed to solve
100 safety-critical scenarios consecutively, in addition to
generalizing to an unseen environment, is far beyond the
capabilities of today’s state-of-the-art methods.

Metrics: We use the standard metrics of each respective
benchmark. Success Rate (SR) is the percentage of routes
that have been completed without infraction. Route Com-
pletion (RC) measures the percentage of the route that was
completed. Driving Score (DS) multiplies RC with the in-
fraction score (IS), a penalty € [0, 1] that reduces multi-
plicatively every time the agent incurs an infraction. On
town 13 validation, the DS has been observed to be unre-
liable due to scores of state-of-the-art methods being too
low [59]. We additionally report the Normalized Driving
Score (NDS) [59], which solves this problem by multiply-
ing route completion by the infraction coefficient I, a variant
of IS that is normalized by distance driven.

Training: We train TFv6 using a dataset collected with
the LEAD expert. The dataset is larger than the one we
used in Section 3, containing 73 hours of driving instead of
40 hours. We train TFv6 with 4xL.40S GPUs for roughly
1 week in mixed-precision [39]. We use two-stage train-
ing [25], where the first stage only trains perception losses.
Both stages are trained for 30 epochs. Further training de-
tails can be found in the supplementary material.

Radar: We explore the role of radar as an additional mid-
range sensing modality within our TFv6 architecture. Al-
though radar is widely used in production AV stacks, it
remains almost entirely absent from academic end-to-end
driving datasets and benchmarks. Prior CARLA datasets



mostly omit radar entirely. In contrast, LEAD provides four
radar units, each emitting roughly 75 detections per frame
containing 3D location and relative radial velocity, enabling
us to systematically study their contribution.

In TFv6, each radar detection is encoded by sampling the
BEV features at the detection location and concatenating
them with its measured radial velocity as well as location.
A small MLP maps this vector to a radar embedding, which,
along with ego-velocity, serves as context to a fixed set of
learned queries in a 4-layer transformer module. The detec-
tor is trained using a DETR-style matching loss [4], predict-
ing object presence, bounding boxes, and velocity vectors,
and is optimized jointly with the existing perception heads
during perception pretraining.

During planning, the radar queries serve as an additional
context input to the transformer decoder, providing explicit
cues about moving agents and improving the model’s abil-
ity to anticipate dynamic interactions that are partially oc-
cluded or hard to infer from cameras and LiDAR alone.

Baselines: HiP-AD [49] is a camera-only end-to-end driv-
ing approach and the current published state-of-the-art on
Bench2Drive. TFvS [59] is an end-to-end driving method
that fuses LiDAR and camera data with Transformers and
the latest iteration of the classic TransFuser architecture
[41]. SimLingo [42] is a recent vision language action
model that ranks second on Bench2Drive. UniAD [22] is
a popular end-to-end driving approach that sequentially uti-
lizes auxiliary losses. PDM-Lite [48] is a privileged rule-
based planning method that uses ground truth perception
inputs and is used for automatic data collection.

Results: Table 3 shows that TFv6 outperforms TFvS by
11 points in DS and by 20 points in SR on Bench2Drive.
TFv6 sets a new state-of-the-art on Bench2Drive, outper-
forming the best published method, HiP-AD [49], by 8 DS
and 18 SR. This is a significant leap in performance. In par-
ticular, because Bench2Drive is a mature benchmark with
48 baselines. We report the results of the other baselines
in the supplementary. To set this improvement in perspec-
tive, HiP-AD outperforms SimLingo [42], the second-best
published method, by 2 DS and 2 SR. TFv6 comes close
in performance to its expert LEAD with only a 2 DS gap,
although the SR gap is still 10 points.

On longest6 v2, the improvement over TFvS is even
more pronounced, with gains of +39 DS and +21 RC. No-
tably, the state-of-the-art Bench2Drive method, HiP-AD,
performs poorly on this benchmark, achieving only 7 DS.
Qualitative analysis shows frequent failures in which HiP-
AD struggles to remain on the road for extended periods
and becomes stuck after driving onto sidewalks.

These results underscore the importance of evaluating
methods on long driving routes. This is particularly con-
cerning given that CARLA is currently the only widely used
simulator that supports long-form evaluation. Most recent

benchmarks and simulation frameworks [3, 17, 21, 29, 30,
38, 54, 58] are limited to short-form driving due to log-
replay or reconstruction-based designs that inherently pre-
vent long-horizon testing. Generative approaches [11, 43]
may offer a path forward in addressing this limitation.

Table 3 also shows several ablations on different sen-
sor setups with TFv6. We find that using 3 cameras with
a combination of LiDAR and Radar sensors yields the best
results, +19 DS on longest6 v2 compared to using cameras
only. Additionally, we show that the RegNetY-032 back-
bone provides a performance improvement of +5 DS on
longest6 v2 compared to the smaller ResNet-34 backbone,
consistent with the findings of [10].

Table 4 shows the results on the CARLA town 13 bench-
mark. TFv6 outperforms TFv5 by 1.9 NDS as well as 1.6
DS. Note that these results do not use early stopping [59]
as indicated by the high route completions. TFv6 drives
much more safely than TFv5 as indicated by its higher IS
and I metrics, but also drives more conservatively as indi-
cated by the lower RC. On Town 13 Validation, the gap to
the privileged expert driver remains substantial. To high-
light the impact of generalization, we also evaluate TFv6
trained with data from town 13 (Town 13 Train), but shade
the results in gray to make it clear that these results are only
for analysis purposes. We observe a large generalization
gap. TFv6 achieves 14.65 NDS on Town 13 Train, which
drops to 4.04 NDS when evaluated on Town 13 Val. This
highlights the need for validation benchmarks where meth-
ods do not train on any data collected in the validation town.
Many contemporary benchmarks do have training and test-
ing areas cleanly separated by geographic region. Overall,
TFv6 presents a substantial step forward for the state-of-
the-art on Town 13 Val, but the gap to the privileged expert
driver remains huge. The town 13 Validation benchmark
was released already 3 years ago in 2022, but has not been
used in any works up until Zimmerlin et al. in late 2024
[59]. The reason was that the difficulty of this benchmark
was overwhelming for state-of-the-art methods. The pop-
ular approach UniAD [22], for example, achieves a trivial
score of 0 NDS even disregarding generalization. Given that
scores on many other benchmarks are saturating, it may be
time for the community to revisit this challenge.

4.2. Real-World Data Benchmarks

We further supplement our evaluation with multi-
ple real-world benchmarks for end-to-end driving:
(1) NAVSIM v1 [17] requires a sensor agent to plan a
4-second trajectory given multi-view camera observation,
historical vehicle states, and discrete driving commands
over a 2-second history. The benchmark is based on the
nuPlan dataset [29] and specifically filters out ordinary
driving situations with trivial solutions. An open-loop
rollout of the trajectory is scored with the Predictive



Method | NAVSIM vl navtest PDMS 1 | NAVSIM v2 navhard EPDMS 1 | WOD-E2E Validation RFS 1
Ego Status MLP [17] 65.6 12.7 7.31

LTF [10] 83.8 23.1 -

LTFv6 85.4 28.2 7.51

+ LEAD Pre-Training 86.4 31.4 7.76

RAP [19] \ 93.7 \ 39.6 \ -

Table 5. LTFv6 on Real-World Data. We show results on the navtest splits in NAVSIM vl1, the navhard split of NAVSIM v2, and
the validation split of WOD-E2E. Our LTFv6 model and LEAD training strategy exhibit consistent performance gains across benchmarks.

Driver Model Score (PDMS), which combines several
sub-metrics, including no-collision, progress, time-to-
collision. (2) NAVSIM v2 [3] further extends vl and
introduces a two-stage evaluation pipeline and the Ex-
tended PDMS (EPDMS), that includes more sub-metrics,
i.e., traffic-light compliance, lane keeping, and extended
comfort. The second stage approximates a closed-loop
rollout with pre-generated observations from 3D Gaussian
Splatting [31, 34]. EPDMS weights the second stage
outcomes based on the first stage endpoint proximity.
(3) WOD-E2E [54] is an open-loop benchmark that
involves predicting a 5-second trajectory, given similar
multi-view camera images, vehicle states, and a driving
command. The benchmark builds on 4,021 curated 20-
second segments that specifically sample long-tail events
occurring with less than 0.003% frequency in daily driving.
The Rater Feedback Score (RFS) evaluates trajectories
against three expert-annotated quality annotations ranging
between 0 and 10. The agent either receives the expert score
if the predicted trajectory falls within threshold-defined
trust regions, or else the score is exponentially decayed.

Training: For the NAVSIM benchmarks, we use the full
navtrain split and a subset of 100k frames from CARLA.
For the CARLA data, we adapt the camera parameters to
match NAVSIM and specifically sample scenarios that in-
volve traffic rules and agent interactions. We only use the
perception labels from the synthetic CARLA data to avoid
the driving-style mismatch between human data collectors
and LEAD. We train on mixed data in the first 30 epochs,
which smoothly excludes the synthetic data, followed by
90 epochs excluively training on navtrain. Similarly,
for WOD-E2E, we pre-train for 30 epochs exclusively on
CARLA data, followed by 30 epochs of fine-tuning on the
WOD-E2E training split. We provide further information
in our supplementary material. Since LiDAR and radar
data are not available in all the benchmarks, we drop these
modalities and replace the LIDAR with a positional encod-
ing, as done in the Latent TransFuser (LTF) variant [10]. We
call the resulting method LTFv6 to indicate that this version
matches the TFv6 architecture.

Results: As shown in Table 5, we achieve notable im-
provements from our LTFv6 architecture compared to La-

tent TransFuser, with +1.6 and +5.1 in the NAVSIM vl
and v2 scores, respectively. Generally, LTFv6 improves
in the ego progress, drivable area compliance, and traffic
light compliance submetrics with minor trade-offs in com-
fort. Our proposed joint pre-training further increases the
LTFv6 score consistently across all benchmarks, demon-
strating the value of synthetic data despite the presence of
distribution shifts. The training with LEAD improved our
score by +0.25 in RFS. While the concurrent work RAP
exhibits stronger performance overall [19], the method re-
quires significantly more compute (e.g., using a 0.9B pa-
rameter backbone) and NAVSIM-specific optimization ob-
jectives. In contrast, our lightweight model demonstrates
that improvements from simulation and co-training with
synthetic data translate to real-world data.

5. Conclusion

In this paper, we identify and address a critical yet over-
looked problem in vision-based autonomous driving: the
learner-expert asymmetry that arises when expert driving
intent cannot be deduced from the learner’s observation
space. To tackle this, we introduce LEAD, a dataset that
minimizes these asymmetries through careful collection
techniques, such as constraining the expert’s field-of-view.
When training on LEAD, our simple TFv6 architecture sur-
passes all prior work on all public CARLA benchmarks by
a large margin. Beyond simulation, co-training on LEAD
and real-world data improves performance on the NAVSIM
and Waymo Open Datasets. Our work highlights that care-
ful dataset design, i.e., ensuring proper intent representation
and realistic visibility constraints, is as crucial as algorith-
mic innovation for end-to-end autonomous driving.

Limitations: We identify several recurring failure modes
of our driving policy. In CARLA, the model struggles to re-
cover from route deviations. The agent frequently misses
highway exits that require multiple lane changes at high
speeds. While such behavior might not be desired, we find
the CARLA metric is overly strict and promotes unsafe
lane-change maneuvers. Finally, we observe in all tested
benchmarks that navigation in dense urban environments
remains challenging.
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