# Cross-dataset Training LEAD supports cross-dataset training as a side-feature, allowing you to train on datasets beyond CARLA. ## Table of Contents - [Setup Waymo Data](#setup-waymo-data) - [Setup NavSim Data](#setup-navsim-data) - [Training on Waymo](#training-on-waymo) - [Training on NavSim](#training-on-navsim) ## Setup Waymo Data Follow this step if you want to use Waymo E2E and Waymo Perception datasets. ### Install Google Cloud CLI ```bash cd .. curl -O https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/google-cloud-cli-linux-x86_64.tar.gz tar -xf google-cloud-cli-linux-x86_64.tar.gz ./google-cloud-sdk/install.sh gcloud init ``` ### Install Additional Python Packages ```bash pip install waymo-open-dataset-tf-2-12-0==1.6.7 pip install numpy==1.26.0 # Reinstall the correct numpy ``` ### Download Waymo Data ```bash TODO: Add Waymo download instructions ``` ## Setup NavSim Data Follow this step if you want to use the `navtrain` split. ### Download Data First download data and organize them: ```bash cd 3rd_party/navsim_workspace/dataset bash 3rd_party/navsim_workspace/navsimv1.1/download/download_navtrain_parallel.sh bash 3rd_party/navsim_workspace/navsimv1.1/download/download_test_parallel.sh bash 3rd_party/navsim_workspace/navsimv2.2/download/download_navhard_two_stage.sh bash 3rd_party/navsim_workspace/navsimv1.1/download/download_maps.sh ``` ### Build Cache ```bash conda activate navsimv1.1 sbatch scripts/tools/data/navsim/001_navtest_cache.sh conda activate navsimv2.2 sbatch scripts/tools/data/navsim/002_navhard_cache.sh ``` ## Training on Waymo TODO: Add Waymo training instructions ## Training on NavSim TODO: Add NavSim training instructions ## Cross-Dataset Evaluation TODO: Add cross-dataset evaluation instructions