Cross-dataset Training

LEAD supports cross-dataset training as a side-feature, allowing you to train on datasets beyond CARLA.

Table of Contents

Setup Waymo Data

Follow this step if you want to use Waymo E2E and Waymo Perception datasets.

Install Google Cloud CLI

cd ..
curl -O https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/google-cloud-cli-linux-x86_64.tar.gz
tar -xf google-cloud-cli-linux-x86_64.tar.gz
./google-cloud-sdk/install.sh
gcloud init

Install Additional Python Packages

pip install waymo-open-dataset-tf-2-12-0==1.6.7
pip install numpy==1.26.0 # Reinstall the correct numpy

Download Waymo Data

TODO: Add Waymo download instructions

Setup NavSim Data

Follow this step if you want to use the navtrain split.

Download Data

First download data and organize them:

cd 3rd_party/navsim_workspace/dataset
bash 3rd_party/navsim_workspace/navsimv1.1/download/download_navtrain_parallel.sh
bash 3rd_party/navsim_workspace/navsimv1.1/download/download_test_parallel.sh
bash 3rd_party/navsim_workspace/navsimv2.2/download/download_navhard_two_stage.sh
bash 3rd_party/navsim_workspace/navsimv1.1/download/download_maps.sh

Build Cache

conda activate navsimv1.1
sbatch scripts/tools/data/navsim/001_navtest_cache.sh
conda activate navsimv2.2
sbatch scripts/tools/data/navsim/002_navhard_cache.sh

Training on Waymo

TODO: Add Waymo training instructions

Training on NavSim

TODO: Add NavSim training instructions

Cross-Dataset Evaluation

TODO: Add cross-dataset evaluation instructions